Velocity Analysis Using Diffraction Focusing

Satyan Singh* and Paul Sava

Center for Wave Phenomena
Colorado School of Mines
Project goals

diffraction focusing
Project goals

diffraction focusing

wavefield tomography
Waveform inversion

\[J = \frac{1}{2} \left\| d_{obs}(x_r, t) - d_{pre}(x_r, t) \right\|_{x_r, t}^2 \]
Source focusing

\[J = \frac{1}{2} \| P(x)R(x) \|_x^2 \]
Diffraction focusing

\[J = \frac{1}{2} \| P(x) R(x) \|_{x}^{2} \]
Correct
Diffraction focusing

\[J = \frac{1}{2} \| P(x)R(x) \|_x^2 \]
Gradient of objective function

Waveform inversion

\[Lu = f \]

Diffraction focusing

\[L^* u = f \]
Gradient of objective function

Waveform inversion

\[L u = f \]

\[d_{\text{obs}} - d_{\text{pre}} \]

Diffraction focusing

\[L^* u = f \]

\[PR \]
Gradient of objective function

Waveform inversion

\[Lu = f \]
\[d_{\text{obs}} - d_{\text{pre}} \]
\[L^*a = g \]

Diffraction focusing

\[L^*u = f \]
\[PR \]
\[La = g \]
Gradient of objective function

Waveform inversion

\[\mathbf{L} u = f \]
\[d_{\text{obs}} - d_{\text{pre}} \]
\[\mathbf{L}^* a = g \]
\[\nabla J = \sum_{\omega} \omega^2 \bar{a} u \]

Diffraction focusing

\[\mathbf{L}^* u = f \]
\[\mathbf{P} \mathbf{R} \]
\[\mathbf{L} a = g \]
\[\nabla J = \sum_{\omega} \omega^2 \bar{a} u \]
Example
Data
Research questions

focusing measures?

wavefield information?

diffraction interference?