Wavefield tomography using image-warping

Francesco Perrone

- Doctoral Thesis -
Geophysics

Defended on October 16, 2013

Advisor: Prof. Paul Sava
Committee Members: Prof. Dave Hale
 Prof. André Revil
 Prof. John Scales
 Prof. Luis Tenorio

Center for Wave Phenomena
Colorado School of Mines
Golden, Colorado 80401
303.384.2178
http://cwp.mines.edu
WAVEFIELD TOMOGRAPHY USING IMAGE-WARPING

by

Francesco Perrone
ABSTRACT

The main objective of this thesis is to study new methods for estimating the macro velocity model, which controls the wave kinematics, in the context of reflection seismology.

Migration velocity analysis evaluates the quality of the velocity model used for imaging seismic data by comparing images of the subsurface structures as a function of extension parameters, such as offset, reflection angle, or shot-index. The angle domain has proved to be a suitable domain for velocity analysis because of its robustness against the noise introduced by the migration operator and against the ambiguities due to complex wave propagation in the subsurface. Nonetheless, angle gathers require an extra computational effort especially in full azimuth 3D scenarios. On the other hand, most migration algorithms naturally process the reflection data and output images in the shot-domain, which is usually regarded as a poor option for velocity analysis. The ability to extract reliable information about the velocity model from single-experiment images has value not only for the construction of macro velocity models for imaging but also for the regularization of high-resolution data-fitting techniques in a way that is compliant with the physics of wave propagation.

In this thesis, I investigate how to make shot-domain velocity analysis algorithms more robust by exploiting the coherency of the structural features in the migrated domain and using the concept of image-warping. I link the difference between two migrated images with the concept of image-warping and show that with image-warping, one can obtain an approximation of the image difference that is less sensitive to the distance between the shot points. I use the image-warping approximation of the standard image difference as the input of a linearized inversion scheme to reconstruct the velocity anomaly in the migration model. The linearized inversion is based on one-way migration algorithms and relies on a series of assumptions about the strength of the perturbation in the wavefields and in the model. In order to remove these assumptions, I use the insight gained about the relationship between
the orientation of the structural features in the image and the warping vector field to design
an optimization problem that does not involve any up-front linearization of the propagation
operator. Using adjoint-state techniques, I was able to compute the gradient of the objective
function and thus implement a two-way wavefield tomography scheme. The basic building
block of my tomography algorithm is the measure of the apparent displacement between
two nearby shot gathers along the normal direction to the imaged reflector. Because no
stacking of partial images is needed to obtain the measure of velocity error, my approach
is intrinsically shot-based. This feature of the error measure and inversion scheme allows
one to reconstruct errors in the migration velocity from a minimum number of experiments.
I show how this approach can reconstruct, using a single experiment, the anomaly in a
hydrocarbon reservoir that undergoes depletion because of production. The measure of local
apparent displacements with penalized local correlations proves to be effective in scenarios
where the geometry of the reflectors is simple and the orientation of the structural features
can be unambiguously computed. Moreover, penalized local correlations are particularly
sensitive to the shot distance for shallow interfaces and may suffer from crosstalk due to other
reflectors falling in the same correlation window. Following these considerations and using
the relationship between image difference and image-warping, I show that image-warping can
be used to modify the expression of the adjoint sources for standard differential semblance
optimization to make the method robust against cycle skipping in the image domain even
with strong errors in the velocity model.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xvii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>xx</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Velocity Model Building Techniques</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Thesis Organization</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER 2 LINEARIZED WAVE-EQUATION MIGRATION VELOCITY</td>
<td>12</td>
</tr>
<tr>
<td>ANALYSIS BY IMAGE-WARPING</td>
<td></td>
</tr>
<tr>
<td>2.1 Summary</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Image Similarity, Warping, and Velocity Errors</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1 The Semblance Principle</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2 Image Difference, Image Warping, and Image Perturbation</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3 Wave-Equation Migration Velocity Analysis</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4 Workflow</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Numerical Examples</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1 Sensitivity to Cycle-Skipping and Backprojections</td>
<td>27</td>
</tr>
<tr>
<td>2.4.2 Inversion Test</td>
<td>29</td>
</tr>
<tr>
<td>2.4.3 Local Marmousi Inversion</td>
<td>32</td>
</tr>
</tbody>
</table>
2.5 Discussion ... 36
2.6 Conclusions .. 39
2.7 Acknowledgments ... 40

CHAPTER 3 WAVEFIELD TOMOGRAPHY BASED ON LOCAL IMAGE CORRELATIONS ... 41
3.1 Summary ... 41
3.2 Introduction .. 42
3.3 Theory ... 45
 3.3.1 Image Correlation Objective Function 45
 3.3.2 Computation of the Gradient with the Adjoint-State Method .. 51
 3.3.3 Adjoint Sources ... 53
 3.3.4 Flat Reflector in a Constant Velocity Medium 55
3.4 Examples ... 58
 3.4.1 Synthetic Laterally Heterogeneous Model 58
 3.4.2 Real Data ... 61
3.5 Discussion .. 63
3.6 Conclusions .. 71
3.7 Acknowledgments .. 72

CHAPTER 4 SHOT-DOMAIN 4D TIME-LAPSE SEISMIC VELOCITY ANALYSIS USING APPARENT IMAGE DISPLACEMENTS 73
4.1 Summary ... 73
4.2 Introduction .. 74
4.3 Theory ... 75
4.4 Synthetic Depletion Model 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1</td>
<td>Full-Aperture, Repeatable Survey</td>
<td>82</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Limited-Aperture, Repeatable Survey</td>
<td>86</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Limited-Aperture, Non-repeatable Survey</td>
<td>90</td>
</tr>
<tr>
<td>4.5</td>
<td>Discussion</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
<td>95</td>
</tr>
<tr>
<td>4.7</td>
<td>Acknowledgment</td>
<td>96</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary</td>
<td>97</td>
</tr>
<tr>
<td>5.2</td>
<td>Introduction</td>
<td>98</td>
</tr>
<tr>
<td>5.3</td>
<td>Theory</td>
<td>102</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Adjoint-State Method, Demigration, and Iterative Nonlinear Inversion</td>
<td>104</td>
</tr>
<tr>
<td>5.4</td>
<td>Numerical Examples</td>
<td>106</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Horizontal Reflector</td>
<td>106</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Highly Refractive Model and Migration Failure</td>
<td>111</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Marmousi Model</td>
<td>113</td>
</tr>
<tr>
<td>5.5</td>
<td>Discussion</td>
<td>125</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions</td>
<td>128</td>
</tr>
<tr>
<td>5.7</td>
<td>Acknowledgments</td>
<td>129</td>
</tr>
<tr>
<td>6.1</td>
<td>Main Conclusions</td>
<td>130</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Image-Warping and Differential Semblance</td>
<td>130</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Geometrical Relationship between Structural Information and Warping</td>
<td>130</td>
</tr>
</tbody>
</table>
Figure 2.1 Migrated images can in principle be ordered in a hypercube and indexed by spatial location x, experiment number e, and extension parameter α. By staking along one of the axes we reduce the dimensionality of the data and are able to analyze them. For example, we can stack along the extension parameter axis (e.g., reflection angle) and evaluate model accuracy by measuring the semblance at discrete positions in space between images corresponding to all experiment indices (a). Alternatively, by slicing together images from all experiments, we obtain common-image gathers (e.g., angle-domain common-image gathers), which we usually analyze at fixed spatial locations (b). A third option is to stack over the extension parameter and to analyze all points in the image for two (or a small number of) images obtained from nearby experiments (c). This last solution is what we propose in this paper. 15

Figure 2.2 Horizontal density interface imaged using a single shot at $x = 2$ km and 800 receivers spaced 10 m at every grid point at the surface. The angle between the dip (solid arrows) and displacement vector field (dashed arrow) indicates a velocity error: (a) velocity too low, (b) correct velocity, and (c) velocity too high. The displacement vector field is computed using a second image obtained from a shot located at $x = 2.05$ km. 19

Figure 2.3 Vertical section of a 3D model with azimuthal symmetry. (a) Density model, (b) background slowness model, and (c) slowness anomaly. 25

Figure 2.4 (a), (c), and (e) show the backprojection of image perturbations for a positive value of the anomaly in Figure 2.3(c). The image perturbations are obtained by forward WEMVA operator, image-warping, and image difference respectively. (b), (d), and (f) show the backprojections obtained for a negative anomaly. Image-warping consistently produces smoother backprojections that better approximate the ideal cases in (a) and (b). The oscillations in the backprojections of image differences are connected with cycle-skipping problems. 26

Figure 2.5 Model for the inversion test: (a) stack of layers with alternating values of density (b) correct slowness model. 28

Figure 2.6 Slowness model: (a) initial and (b) inverted after 13 nonlinear iterations. 28
Figure 2.7 Migrated images: (a) image obtained with the initial velocity model and (b) after 13 velocity updates. The image in (b) is obtained after 13 nonlinear iterations; every linearized problem involves five iterations of conjugate gradient. Note the better focusing of the image.

Figure 2.8 Comparison of the initial (dotted line), inverted (dashed line), and exact (solid line) slowness model at (a) $x = 2.5$ km and (b) $x = 5.5$ km. The inversion reduces the anomaly but does not eliminate it. Nonetheless, the reflectors in Figure 2.7(b) are flattened.

Figure 2.9 The decrease of the energy of the image perturbation indicates that we are approaching the correct model. We stopped the inversion after 13 iterations because the objective function starts oscillating, which indicates that we reached a minimum of the objective function.

Figure 2.10 Macro slowness model (a) for the Marmousi dataset and (b) slowness perturbation for the model in (a).

Figure 2.11 Image obtained using the correct slowness model (a), initial migrated image (b), migrated image after 20 nonlinear iterations (c). We consider 12 shots, evenly spaced by 0.04 km at the surface; the first shot is positioned at $x = 0.96$ km. The receivers are spaced 0.008 km on the surface and they are located at every grid point. Observe the improved continuity of the bottom reflector and the correction of the distortion of the middle dipping interfaces at a lateral position about $x = 2$ km.

Figure 2.12 (a) Exact slowness perturbation and (b) inverted anomaly after 20 iterations of linearized migration velocity analysis. We correctly recover the location and magnitude of the perturbation.

Figure 2.13 Comparison of the initial (dotted line), inverted (dashed line), and exact (solid line) slowness model at $x = 2.5$ km. Observe that inversion corrects the large discrepancy between the initial and correct model.

Figure 2.14 The energy of the image perturbation decreases rapidly and reaches convergence.

Figure 3.1 Relationship between the dip field and the apparent displacement: dip (solid) and displacement (dashed) vector fields for different values of slowness error for a single horizontal reflectors: (a) $\Delta \frac{m}{m} = 10\%$, (b) $\Delta \frac{m}{m} = 0$, and (c) $\Delta \frac{m}{m} = 10\%$. The correct slowness value is 0.5 s/km.
Figure 3.2 Measure of the relative displacement between two images using penalized local correlations. We consider 2 images from nearby experiments of the reflector in Figure 3.1; each row (from top to bottom) represents a different model: too high, correct, and too low; the columns show (from left to right) the local correlation panel, the penalty operator used, and the penalized local correlation. For each model, we pick a point on the reflector with lateral coordinate \(x = 3.5 \) km. The vertical coordinate changes as a function of model parameters because the depth of the reflector changes. Observe the asymmetry of the penalized local correlations for the wrong models: the mean value (i.e., the stack over the correlation lags) of the penalized correlations gives us a measure of the relative shift between two images.

Figure 3.3 Values of the objective function for different errors in the slowness model. We consider constant perturbations ranging from \(-10\%\) to \(10\%\) of the exact value (0.5 s/km).

Figure 3.4 For the three cases in Figure 3.1, we compute the shifts \(r(x) \) according to equation 3.4. The sign of the shifts indicates the relative displacement of one image with respect to the other.

Figure 3.5 Gradient of the correlation objective function for a slowness model that is too low (a), correct (b), and too high (c). The slowness squared error is constant everywhere and equal to 10\% of the background. The distance between the two shots is 60 m. We consider three shots and computed the gradient using the wavefields of the central experiment.

Figure 3.6 Velocity model used to generate the full-acoustic data. Absorbing boundary conditions have been applied at all sides of the model. The lighter shades of grey indicate faster layers. The top layer has velocity of water (1.5 km/s).

Figure 3.7 Initial velocity model (a), associated migrated image (b), and shot-domain common-image gathers. The reflectors are severely defocused and mispositioned. Observe the curvature of the common-image gathers that shows how different experiments image the reflectors at different depths.

Figure 3.8 Velocity model after 15 iterations of waveform inversion (a), migrated image (b), and shot-domain common-image gathers (c). Observe the improved focusing and positioning of the reflectors. The common-image gathers show that the images are invariant in the shot direction and the model is thus kinematically correct. Observe the profile of the various layers in the reconstructed model.
Figure 3.9 Evolution of the objective function with iterations. Observe the sharp decrease of the objective function and the rapid convergence to a kinematically accurate model. 63

Figure 3.10 Initial migration model and migrated image. 64

Figure 3.11 Final migration model and migrated image. The sections in Figure 3.10(b) and Figure 3.11(b) are displayed on the same color scale. Observe the increased amplitude of the reflectors due to better focusing. 65

Figure 3.12 Shot-domain CIGs computed for the incorrect model at (a) \(x = 12\) km, (b) \(x = 13\) km, (c) \(x = 14\) km, and (d) \(x = 15\) km, and gathers computed after inversion at the same locations ((e), (f), (g), and (h)). The gathers are flattened by the inversion procedure, i.e. the reflectors are invariant with respect to shot index. 66

Figure 3.13 Angle-domain common-image gathers (ADCIGs) computed at several lateral positions (a) before, and (b) after inversion. After inversion the gathers are flatter, which indicates a more kinematically accurate migration model. 67

Figure 3.14 The evolution of the objective function shows that the algorithm converges after about 80 iterations. 68

Figure 4.1 Reservoir geometry after . Pore-pressure (\(P_P = P_{fluid}\)) reduction occurs only within the reservoir, resulting in an anisotropic velocity field due to the excess stress and strain. The reservoir is comprised of and embedded in homogeneous Berea sandstone (\(V_P = 2300\) ms\(^{-1}\), \(V_S = 1456\) ms\(^{-1}\), \(\rho = 2140\) kgm\(^{-3}\)). The Biot coefficient (\(\alpha\)) for the reservoir is 0.85. Velocities in the model are reduced by 10% from the laboratory values to account for the difference between static and dynamic stiffnesses in low-porosity rocks. The change in pore pressure \(\Delta P_{fluid}\) is expressed as a percentage \(\xi\) of the confining pressure \(P_{con}\). 79

Figure 4.2 (a) Density model used to simulate the reflecting interfaces. (b) Velocity model of the depleted reservoir. The original model is homogenous with 2.07 km/s velocity. Observe the characteristic shape of the anomaly with increasing velocity inside the reservoir (because of compaction) and decreasing velocity outside the reservoir (because of tensile strain). 80

Figure 4.3 Sensitivity of the penalized local correlation objective function to different depletions of the reservoir. Observe the lost of sensitivity when the reservoir is strongly depleted. For this sensitivity study, we use a full and perfectly repeatable acquisition. 81
Figure 4.4 (a) Baseline data and (b) difference between monitor data simulated in the depleted reservoir and baseline. The acquisition is perfectly repeatable, the source location is $x = 1.5$ km at the surface, and receivers are at every grid point at $z = 0$ km. The change in polarity for the shallowest events is due to the different sign of the velocity perturbation.

Figure 4.5 (a) Migrated monitor image obtained using the baseline model and (b) migrated monitor image after inversion with full receiver coverage at the surface. The central and deeper reflectors are moved downward, which the shallowest interface is pulled up. The migration artifacts are due to truncation of the acquisition and critical reflections (headwaves) from the anomaly in the depleted reservoir.

Figure 4.6 (a) Actual time-lapse model perturbation and (b) inverted perturbation after 60 iterations of wavefield tomography with full receiver coverage at the surface. Notice that we are able to correctly image the anomaly and also constrain its lateral extent at about $x = 2$ km.

Figure 4.7 (a) Initial estimated shifts and (b) estimated shifts after 60 iterations of wavefield tomography. Black indicates positive (downward) shifts and white represents negative (upward) shifts. Inversion matches the baseline and monitor images and reduces the shifts between them. The strong residual after inversion at about $x = 2.7$ km for the shallowest reflectors is due to the conflicting orientation of the reflectors and migration artifacts in the image.

Figure 4.8 (a) Baseline data and (b) difference between monitor data simulated in the depleted reservoir and baseline. We reduced the receiver coverage to simulate a marine-streamer acquisition. Observe the polarity change of the shallowest reflection events in the differential dataset due to the sign change of the velocity anomaly.

Figure 4.9 (a) Migrated monitor image obtained using the baseline model and (b) migrated monitor image after inversion with reduced receiver coverage. The central and deeper reflectors are moved downward, which the shallowest interface is pulled up. Observe the migration artifacts which represent the main source of noise for inversion. The limited acquisition mutes the close-to-critical reflections from the reservoir and reduces the migration artifacts in the migrated image.
Figure 4.10 (a) Actual time-lapse model perturbation and (b) inverted perturbation after 60 iterations of wavefield tomography. Notice that we are able to correctly image the anomaly and also constrain its lateral extent at about $x = 2$ km. The reduced receiver coverage reduces the extent of the reconstructed anomaly compared to Figure 4.6(b).......

Figure 4.11 (a) migrated monitor image obtained using the baseline model and (b) migrated monitor image after inversion in the case of a non-repeatable survey. The monitor data are acquired using source and receivers at different positions with respect to the baseline survey, but the imaged reflectors are weakly sensitive to small perturbations of the acquisition.

Figure 4.12 (a) Actual time-lapse model perturbation and (b) inverted perturbation after 60 iterations of wavefield tomography. Notice that we are able to correctly image the anomaly and also constrain its lateral extent at about $x = 2$ km. Despite the error in the source and receiver location, the inversion result is indistinguishable from the repeatable case in Figure 4.10(b).

Figure 5.1 Sensitivity kernels obtained from a deep interface using image-warping wavefield tomography for (a) high, (c) correct, and (e) low velocities, and using differential semblance wavefield tomography for (b) high, (d) correct, and (f) low velocities.

Figure 5.2 Objective functions for (a) image-warping wavefield tomography and (b) differential semblance evaluated for a set of model perturbations and the deep interface. The minimum of the objective function indicates the correct model. Differential semblance shows a slightly less resolute objective function for positive slowness anomalies.

Figure 5.3 Sensitivity kernels obtained from a shallow interface using image-warping wavefield tomography for (a) high, (c) correct, and (e) low velocities, and using penalized local correlations wavefield tomography for (b) high, (d) correct, and (f) low velocities. Penalized local correlation are strongly biased at the edges of the subsurface aperture.

Figure 5.4 Objective functions for (a) image-warping wavefield tomography and (b) penalized local correlations evaluated for a set of model perturbations and the shallow interface. Penalized local correlation fail to identify the correct model.
Figure 5.5 (a) Velocity model used to study the behavior of the inversion in highly refractive media. The low velocity anomaly is Gaussian-shaped and its minimum value is 40% lower than the 2 km/s background. (b) Density model used to generate reflections.

Figure 5.6 Shot-gather for a source at $x = 3$ km. Notice the complicated response of the medium due to the triplications of the wavefield passing through the low velocity anomaly.

Figure 5.7 Migrated image obtained from the shot-gather in Figure 5.6 with the correct velocity model. Observe the distorted image of the reflectors and the artifacts introduced by the migration operator. (b) Sensitivity kernel obtained using image-warping wavefield tomography for the correct velocity model. The kernel should be very small and incoherent because the model is actually correct; the spurious kernel is thus completely due to the artifacts in the image.

Figure 5.8 The objective function obtained by perturbing the model with a Gaussian anomaly having the same extent of the one in the correct model but with different amplitudes. Notice that the objective function correctly measures errors in the velocity model.

Figure 5.9 (a) Exact Marmousi model and (b) ray-tracing through a mildly smoothed version of the model in (a). Observe the complex ray paths, which highlight the refractive behaviour of the model.

Figure 5.10 Shot-gather with source at $x = 1.6$ km; (a) the reflection data after the removal of the direct arrival and (b) after applying amplitude equalization and smooth tapering of the refracted energy. The amplitude equalization is implemented by scaling each trace by a smooth local estimate of the rms of the trace itself.

Figure 5.11 (a) The initial model represented by an incorrect too slow $v(z)$ velocity. (b) The migrated image is distorted and not interpretable in the central part of the model. Observe the general upward shift of the image due to the bias in the velocity model.

Figure 5.12 (a) The gradient of the standard DSO objective function and (b) the gradient obtained by modifying the adjoint sources using image-warping. In both cases, the gradient is with respect to slowness squared; blue indicates that slowness shall be decreased and red indicates that slowness shall be increased. For this particular initial model, DSO does not provide a useful gradient for wavefield tomography.
Figure 5.13 (a) Recovered velocity model and (b) migrated image using the result of the inversion. To reduce the influence of the migration artifacts, we focus on the long wavelength of the velocity field by smoothing the computed gradients and correct the bulk shift of the main reflectors. . . 123

Figure 5.14 The value of the objective function decreases smoothly with iterations. Convergence slows down after 50 iterations because the residuals measured on migration artifacts becomes significant with respect to the residual measured on actual reflectors. 124

Figure 5.15 Full-waveform inversion result obtained using the image-warping wavefield tomography inverted model in Figure 5.13(a) as initial guess. The data are low-passed filtered with cut-off frequency of 3 Hz. The improved kinematics of the model obtained by image-warping wavefield tomography removes the cycle-skipping problem in the data domain and allows one to reconstruct a high-resolution model. 124
ACKNOWLEDGMENTS

When I arrived in Colorado about 5 years ago, I did not know exactly what would have happened. Everything was new: the language, the people, and the challenges of a PhD program like Geophysics, which was something I approached from a quite different background. Ivan is one of the first people I met in Golden and one of the first things he said was to Cecilia; he told her to support me because I would have needed it. At that time, I thought he was exaggerating but he turned out he was very right. Fortunately for me Cecilia has always been close and supportive, even when I was angry, frustrated, and discouraged and I was the furthest away from her.

I am very thankful for all the wonderful people I met in Golden; Ivan, Gabi, Matt, Farnoush, and Jyoti have since then being close friends and immediately they made me feel home. I could not ask for better roommates than Bharath and Filippo. Cucha deserves a special place in these acknowledgments. She has been a great friend from the very first day and her happiness and brightness was always able to cheer me up when my mood was really gloomy.

I am glad I had the chance to work interact with Clément, whose keen intelligence and curiosity are and will remain a true source of inspiration. Steve Smith has been probably the best fellow student anyone would wish to have. He has been always ready to help despite the time that help would have taken to his own work.

I will miss all the Italian people that I met in Golden. Sarah, Elisabetta, Samuele, Francesca, Silvia, Eleonora, Luigi, and Luca. They have been a family thousands of kilometers away from Italy.

CWP is being an extraordinary working environment, I learnt a lot the students form a great group, where everybody is always ready to help each other, thus learning and growing together. I would like to thank my advisor Paul Sava that trusted me and gave me complete
independence in my research; Ilya Tsvankin has been a great teacher and I think it is fair to say that if I know anything about seismology it is because of him. Dave Hale is a tremendous scientist, one of a kind, and I am really thankful to having had him as a teacher and in my committee. I will miss the long conversations with John Stockwell and his stories about the history of geophysics, exploration seismology, and computer science. Diane Witters deserves a *honoris causa* degree in exploration geophysics but also in psychology and many other disciplines because of the fantastic work she does with the students and in particular with international students in CWP. She has always been the friendly and kind person you needed to talk to when down and discouraged.

Pam deserves a special thank for her fantastic work for the students. Without her, life would be simply much more complicated. She takes good care of all the students and protects them from the pain and sweat of the boring and frustrating part of every job: bureaucracy! The last years would have been certainly more boring without Shingo, I will miss the random conversations over lunch on the grass outside the Green Center. I will also miss Barbara (actually I miss her every day since she retired); I will miss her happiness and kindness, which made human an otherwise very intense and sometimes really stressful environment like CWP.

The Geophysics Department has been like a second home, a place where you learn and grow together with other people that share the same interests. But this is not something that simply happens, it is the result of the vision of the Head of the Department, Dr. Terry Young, and the daily work of the staff. I am very thankful to have met Terry and his wife, who immediately, for the very first day, made me feel welcome. I would also thank Michelle for helping the students out, first as CWP program assistant and then as program assistant of the Geophysics Department. Despite the gigantic amount of work on her, she has always been ready to help all the students with a big smile and pure positive thinking.

I would like to thank my committee members. Great scientist with very different research interests that taught me by example how to do research and what being a scientist means.
Most of what I know about non-seismic exploration geophysics comes from André and his course. The discussions with John and André about inverse problems and the meaning of solving an inverse problem will remain amongst the most inspiring conversations I had during the PhD program. It is difficult to quantify how much I learnt from Dave’s classes and comments during seminars. He definitely made me become a better programmer and his way of analyzing a problem and his attention to the important details will always remain a tremendous example. Last but not least, I would like to thank Luis for his support when I was confused in my research, for the attention he always paid when I was trying to explain the problems I was facing, and for remembering me that I actually know how to do things right.
To my teachers.

“All happiness or unhappiness solely depends upon the quality of the object to which we are attached by love.” B. Spinoza
CHAPTER 1
INTRODUCTION

The main goal of seismic imaging is to supply a reliable image of the changes in material parameters that correspond to different geologic structures in the subsurface. The image is obtained by remapping the seismic data recorded at the acquisition surface in a model of the subsurface. A model is a set of material parameters that govern wave propagation in the Earth (\(P\)-wave propagation velocity, slowness, stiffness coefficients, etc.) and the functions that describe how these parameters vary spatially. An accurate estimation of the values of the material parameters is fundamental for reconstructing the Green’s function from the source (and receiver) position to every point in the medium and thus for precisely locating the changes in material parameters in the subsurface. Once the physical model (elastic vs. acoustic, isotropic vs. anisotropic) is assumed, the values of the material parameters must be estimated from the acquired data. An accurate model of the subsurface is key for achieving accurate structural images, and the correct characterization of the geometry of reflectors is utterly important for interpreting the geology, identifying possible hydrocarbon traps, and thus planning drilling operations and correctly positioning the wells.

The material parameters also carry information about the mechanical conditions in the subsurface (Carcione, 2007). For example, the propagation velocity is directly linked to the stiffness coefficients of the medium, and thus we can infer the stress conditions in the medium by analyzing the trends and spatial variations of the propagation velocity. This information is crucial for identifying overpressures in the subsurface, which could represent hazards during drilling operations. The velocity model is also used to calibrate the geomechanical models to assess the risk of fracturing formations or re-activating faults, which may lead to damage to the production infrastructure and loss of the wells (Lumley, 2001). The quantification of the stress conditions in the subsurface is strategic information for risk evaluation, hazard
mitigation, and safe and efficient management in the field.

Despite the elastic nature of wave propagation in the subsurface, most of the processing for seismic structural imaging is based on acoustic assumptions and involves only compressional P-waves; the acoustic assumption reduces the number of parameters of the medium, simplifies the mathematical formulation of the problem, and greatly reduces the computational cost. In this thesis, I work under the assumption of acoustic propagation for compressional waves.

1.1 Velocity Model Building Techniques

The enormous importance of velocity analysis and the objective challenge it represents both from a theoretical and practical point of view have produced a plethora of methods and strategies. Nonetheless, no one method has become the standard. The intrinsic difficulty of the task, the regularization necessary to constrain a severely underdetermined problem, and the wide complexity of the geology in the subsurface are factors that make a single standard approach unlikely to be effective in every scenario.

Inversion methodologies can be classified into two families: direct and indirect methods. Both methods start from the formulation of the forward problem that links the model we want to invert for to the data that we acquire. Direct methods construct an inverse operator that directly transforms the input data into the model. Methods based on the Inverse Scattering Series fall into this category (Weglein et al., 2003). Although in principle the inverse scattering series allows one to accomplish a number of important tasks (from surface-related multiple removal to inversion for material properties), the construction of the inverse operator(s) is a non-trivial task because of the spectral properties of the forward wave operator (Colton and Kress, 1998).

As the name suggests, indirect methods do not construct an inverse scattering operator; instead they rely on the definition of an error measure, e.g., the mismatch between the acquired and a synthetic dataset generated in an initial guess of the physical model. Indirect methods define a metric by means of an objective function, i.e., a functional of the error
measure, and iteratively search the model space to find the set of model parameters that minimizes the error between acquired and synthetic data. By restating the inverse problem as an optimization problem, we never actually need to invert the forward operator. The main challenge becomes the definition of the objective function, which ideally should have a single global optimum, i.e., a global maximum or minimum, which identifies the “correct” model. Notice that “correct” does not mean “exact”; it simply means that the model is optimum according to the chosen metric. In this thesis, I present a new optimization approach for the estimation of the velocity model necessary for seismic imaging.

A number of inversion methods based on optimization theory have been proposed in the last 30 years. For the sake of discussion, these methods are usually divided into data-space and image-space methods, depending on the domain in which the objective function is defined, although the distinction is, in some cases, arbitrary.

Data-domain methods construct the objective function by measuring the mismatch between attributes (traveltimes, phases, full waveform) of the actual observed data and synthetic wavefields modeled in a trial model (Bishop et al., 1985; Dickens, 1994; Green et al., 1998; Krebs et al., 2009; Lambaré et al., 2004; Pratt, 1999; Sirgue and Pratt, 2004; Stork and Clayton, 1991; Tarantola, 1984). The recorded data are redundant indirect measurements of the subsurface structures; image-space methods exploit this redundancy by remapping the observed waveforms in a trial model of the subsurface and constructing a set of images of the contrasts in material parameters that generated the data. This set of redundant images is then analyzed for coherency and similarity. Since the Earth is assumed to be time-invariant on the time-scale of the seismic experiment, the imaged reflectors should be invariant with respect to the seismic experiment. This assumption is usually referred to as the semblance principle (Al-Yahya, 1989; Albertin et al., 2006; Biondi and Sava, 1999; Chavent and Jacobowitz, 1995; Faye and Jeannot, 1986; Fowler, 1985; Sattlegger, 1975; Sava et al., 2005; Shen and Symes, 2008).
Ray methods model wave propagation along the bi-characteristic lines (rays) of the wave-equation and construct the objective function using only the kinematic information (traveltime) of the wave travelling between each source and receiver (Bishop et al., 1985; Dickens, 1994; Green et al., 1998; Stork and Clayton, 1991). Traveltime tomography uses the difference in traveltime between recorded data and computed rays to assess the quality of the current velocity model. The objective function is defined in the data space (l_2 norm of the traveltine differences). The carriers of information are the geometric rays traced in the reference medium; the traveltime error is backprojected along the ray according to the value of velocity/slowness in each pixel that is crossed by the ray. In traveltime migration velocity analysis, the indicator of velocity errors is the residual moveout in postmigrated common-image gathers (CIGs) (Biondi and Symes, 2004; Stork, 1992; Xie and Yang, 2008). The semblance principle imposes flat common-image gathers (usually in the scattering angle domain) and deviation from flatness is converted into traveltime errors and backprojected using either rays (Stork, 1992) or finite bandwidth signals, i.e. extrapolated wavefields (Biondi and Symes, 2004). Xie and Yang (2008) convert the residual moveout in the migrated shot common-image gathers into phase differences and then into traveltime errors, which are eventually backprojected using sensitivity kernels. Ray methods are based on geometric seismic, and they are vulnerable to multipathing and kinematic artifacts (Stolk and Symes, 2004). As Stolk and Symes (2004) show, these kinematic artifacts are independent of the extension parameter for Kirchhoff-type migrations since they are related to the inability of conventional ray-tracing methods to correctly handle multipathing between the source (or receiver) position and the image point. Wave-equation migration, such as downward continuation (Claerbout, 1985) or reverse-time migration (Baysal et al., 1983), and wave-equation tomography automatically take into account multipathing and represent a more robust alternative for moveout analysis.

Wave-equation tomography (Biondi and Sava, 1999; Tarantola, 1984; Woodward, 1992) is a family of techniques that estimate the velocity model parameters from finite-bandwidth
signals recorded at the surface. The inversion is formulated as an optimization problem where the correct velocity model minimizes an objective function that measures the inconsistency between a trial model and the observations. When the objective function is defined in the data-space, it is called full-waveform inversion (FWI) while image-domain wave-equation tomography is commonly referred to as migration velocity analysis (MVA).

Full-waveform inversion (FWI) (Pratt, 1999; Sirgue and Pratt, 2004; Tarantola, 1984) measures the mismatch between the observations and simulated data. Full-waveform inversion aims to reconstruct a model that explains the recorded data. By matching both travel-times and amplitudes, full-waveform inversion allows one to achieve high-resolution (Sirgue et al., 2010). Nonetheless, a source estimate is needed, the physics of wave propagation (for example, isotropic vs. anisotropic, acoustic vs. elastic, etc.) must be correctly modeled, and a good parametrization (for example, impedance vs. velocity contrasts) is crucial (Kelly et al., 2010). Amplitudes of seismic waves are sensitive to complex phenomena (reflection coefficients, anisotropy, elastic interactions) which are second order with respect to traveltime and for this reason can supply additional resolution when modelled correctly (Warner et al., 2012). However, most of the information required to correctly model these phenomena is not accessible from the available data and the errors related to the incorrect modelling can easily overcome the potential advantages; for this reason most of the FWI implementation focus on phase and traveltime information for reconstructing the model (Warner et al., 2012; Xu et al., 2012a). Because of the nonlinearity of the wavefields with respect to the velocity model, the objective function in the data domain is highly multimodal (Santosa and Symes, 1989), and local optimization methods can easily converge to a local minimum and fail to retrieve the correct model. This is particularly true for reflection full-waveform inversion. Refraction full-waveform inversion focuses on diving waves, retaining only the transmission energy (Pratt, 1999). This leads to a better-behaved objective function but requires very long offsets to record the refracted energy. Moreover, this approach limits the depth at which a robust inversion result can be expected.
Migration velocity analysis (MVA) (Al-Yahya, 1989; Albertin et al., 2006; Biondi and Sava, 1999; Chavent and Jacewitz, 1995; Faye and Jeannot, 1986; Fowler, 1985; Sava et al., 2005) operates in the image space, is based on the semblance principle (Al-Yahya, 1989), and focuses on the reflected part of the data. If the velocity model is correct, images from different experiments must be consistent with each other because a single Earth model generates the recorded data. A measure of consistency is usually computed through conventional semblance (Taner and Koehler, 1969) or differential semblance (Symes, 1993; Symes and Carazzone, 1991). These two functionals analyze a set of migrated images at fixed locations in space; they consider all the shots that illuminate the points under investigation. Migration velocity analysis leads to smooth objective functions and well-behaved optimization problems (Symes, 1991; Symes and Carazzone, 1991), and it is less sensitive than full-waveform inversion to the initial model. On the other hand, because we do not use amplitudes in the imaging step, the estimated model has lower resolution than the ideal full-waveform inversion result (Uwe Albertin, personal communication).

Migration velocity analysis measures either the invariance of the migrated images in an auxiliary dimension (reflection angle, shot, etc.) (Al-Yahya, 1989; Rickett and Sava, 2002; Sava and Fomel, 2003; Xie and Yang, 2008) or focusing in an extended space (Rickett and Sava, 2002; Sava and Vasconcelos, 2009; Symes, 2008; Yang and Sava, 2011b). All these approaches require the migration of the entire survey in order to analyze the moveout curve in common-image gathers or to measure focusing at a specific spatial location. The dimensionality of the (extended) image space and computational complexity of the velocity analysis step rapidly explodes for realistic case scenarios. Moreover, because of the high memory requirement for storing the partial information from each experiment, only a subset of the image points can be considered in the evaluation of the objective function. Illumination holes and/or irregular acquisition geometries can also impact the quality of the common-image gathers but no systematic study of this problem is reported in the literature to my knowledge.
Reverse-time migration (RTM) (Baysal et al., 1983; McMechan, 1983) is a migration algorithm based on the solution of a two-way wave-equation. The increase in computational cost compared to one-way algorithms is counter-balanced by the capability to image all possible dips and higher-quality amplitudes because the extrapolation engine naturally models the “correct” physics; with minor modifications, RTM can produce “true-amplitude” images that can then be used for Amplitude-Versus-Angle analysis (Zhang and Sun, 2009; Zhang et al., 2007, 2010). Furthermore, a full-wave propagation engine models more complex wave phenomena (e.g., overturning reflection, prismatic waves, and multiples) and increases the amount of information in the data that can be used for both imaging and velocity estimation (Farmer et al., 2006).

In order to perform the estimation of the model parameters, we need to evaluate the semblance of the migrated image function of an extension parameter (shot-index, surface-offset, subsurface-offset, reflection angle, etc.). RTM operates in common-shot or common-receiver configurations and produces shot-index common-image gathers without any additional cost. Unfortunately, shot-index CIGs are not suitable for parameter estimation because of the migration artifacts that contaminate the single-shot images, especially when the medium is strongly refractive (Stolk and Symes, 2004). Even when the velocity model used for migration is kinematically accurate, the shot-domain CIGs are extremely noisy and both difficult to interpret and unsuitable for measuring semblance (Zhang et al., 2010). The migration velocity analysis state-of-the-art uses angle-domain CIGs, which are free from migration artifacts, to measure semblance and assess the quality of the velocity model. The angle-domain CIGs are a powerful tool but require the migration of the entire survey before being able to pick moveout or measure semblance. Although efficient 2D algorithms have been developed to produce angle-gathers (Sava and Fomel, 2003), the problem of computing angle-gathers (in particular, in 3D) from migrated images remains the subject of active research (Fomel, 2011; Xu et al., 2011; Yoon et al., 2011).
In this thesis, I present an alternative approach to parameter estimation that does not rely on the semblance principle using CIGs. Semblance in CIGs neglects the local coherence of the imaged reflector in the \((x, y, z)\)-space. Although they may contain migration artifacts, single-shot migrated images allow us to evaluate the similarity and coherency of the structural features in the image. I use the concept of image-warping to measure the similarity between the locally coherent events in the migrated image and develop a series of possible solutions to measure velocity errors using image-warping techniques. These measures are then used to define an optimization problem that can be used for migration velocity analysis and model building.

1.2 Thesis Organization

In Chapter 2 I show the link between image difference and image-warping. Image-warping can be used to approximate the difference of migrated images obtained from seismic experiments that illuminate the same portion of the model but differ in some acquisition parameters (source position, ray parameter, etc.). By measuring the apparent displacement between migrated images, I can define a vector fields that maps each point in one image to the correspondent point in the second image. I use the image-warping approximation of the image difference to implement an inversion scheme based on a linearization of the one-way wavefield continuation operator that links perturbations in the model parameters to perturbations in the migrated image. The method is fast because the cost of computing the warping field is negligible when compared to wavefield extrapolation. Moreover, image-warping makes the estimated image perturbation robust against cycle-skipping compared to the conventional image difference. However, the method relies on several approximations of the physics of the problem: mainly the one-way assumption about wave propagation that used to construct the WEMVA operator.

In Chapter 3 I remove the one-way wave propagation assumption by developing a wavefield tomography algorithm based on the full two-way acoustic wave equation. I define an optimization problem based on the minimization of the energy of the apparent shift between
migrated images obtained from nearby experiments. In order to perform the adjoint-state calculation for the gradient of the objective function, I measure the apparent shifts by means of penalized local correlations. Penalized local correlations allows one to correct strong low wavenumber errors in the velocity model; the convergence of the algorithm is fast but the final model is lower resolution compared to other velocity analysis techniques based on metrics that involve stacking of partial images.

In Chapter 4 I use the wavefield tomography technique based on penalized local correlations to reconstruct the time-lapse anomaly caused by the depletion of a reservoir. Apparent shifts in the image domain are weakly sensitive to repeatability parameters such as the source and receiver positions. Using a limited number of experiments, this approach is able to reconstruct the change in model parameters due to production of the reservoir.

In Chapter 5 I restate the conventional Differential Semblance Optimization procedure in the image domain using image-warping. The adjoint sources computed for the DSO objective function depend on the second derivative of the migrated images along the experiment axis. The relationship between image-warping and image difference (i.e., DSO) can be used to make the adjoint-sources robust against cycle skipping. The image-warping version of DSO can recover strong errors in the velocity model and avoid cycle skipping. From a computational point of view, image-warping makes DSO more expensive because the estimation of the warping vectors requires more floating point operations than the direct difference of the images. However, the in both cases, the most computationally intensive part is the wavefield extrapolation and not the construction of the adjoint sources.

I summarize the results presented in the thesis and indicate possible research directions in Chapter 6.

Chapter 2-5 have been either submitted in, or will be submitted, for publication on peer reviewed journals:

- **Perrone, F.**, P. Sava, C. Andreoletti, and N. Bienati, Linearized wave-equation migration velocity analysis by image-warping: submitted to *Geophysics* (Chapter 2)
• **Perrone, F.**, P. Sava, and J. Panizzardi, Wavefield Tomography based on Local Image Correlations: submitted to *Geophysical Prospecting* (Chapter 3)

• **Perrone, F.**, P. Sava, Shot-domain 4D time-lapse seismic velocity analysis using apparent image displacements: to be submitted to *Geophysics* (Chapter 4)

• **Perrone, F.**, P. Sava, image-warping waveform tomography: to be submitted to *Geophysical Prospecting* (Chapter 5)

Chapter 2 and 3 are the result of a collaboration with Eni E & P, which fully sponsored the projects. In addition to the submitted papers, my work contributed to the following granted patent:

• P. Sava, **F. Perrone**, C. Andreoletti, and N. Bienati, WAVE-EQUATION MIGRATION VELOCITY ANALYSIS USING IMAGE WARPING: WO Patent 2,013,009,944

During my PhD study, I also contributed to the following publications in journals and conferences:

• **Perrone, F.** and P. Sava, 2013, Shot-domain 4D time-lapse velocity analysis using apparent image displacements, 83rd Annual International Meeting, SEG, Expanded Abstracts

• C. Fleury, **F. Perrone**, 2012, Bi-objective optimization for the inversion of seismic reflection data: Combined FWI and MVA, SEG, Expanded Abstracts

• **Perrone, F.** and P. Sava, 2012, Wave-equation migration with dithered plane waves: *Geophysical Prospecting*, 60, 444-465

• **Perrone, F.** and P. Sava, 2012, Waveform tomography based on local image correlations: 82th Annual International Meeting, SEG, Expanded Abstracts

• **Perrone, F.** and P. Sava, 2012, Waveform tomography based on local image correlations: 74th Conference and Exhibition, EAGE, Extended Abstracts
• **Perrone, F.** and P. Sava, 2010, Wave-equation migration with dithered plane waves, 72nd Annual International Meeting, EAGE, Extended Abstracts

• **Perrone, F.** and P. Sava, 2009, Comparison of shot encoding functions for reverse-time migration, 79th Annual International Meeting, SEG, Expanded Abstracts
CHAPTER 2
LINEARIZED WAVE-EQUATION MIGRATION VELOCITY ANALYSIS BY IMAGE-WARPING

A paper submitted to Geophysics
F. Perrone¹, P. Sava¹, C. Andreoletti², and N. Bienati²

2.1 Summary

Seismic imaging produces images of contrasts in physical parameters in the subsurface, e.g., velocity or impedance. To build such images, a background model describing the wave kinematics in the Earth is necessary. In practice, both the structural image and background velocity model are unknown and have to be estimated from the acquired data. Migration velocity analysis deals with estimation of the background model in the framework of seismic migration and relies on two main elements: data redundancy and invariance of the structures with respect to different seismic experiments. Since all the experiments probe the same model, the reflectors must be invariant in suitable domains (e.g., shots or reflection angle); the semblance principle is the tool used to measure the invariance of a set of multiple images. We measure the similarity of the structural features between pairs of single-shot migrated images obtained from adjacent experiments. By using the estimated warping vector field between two migrated images, we construct an image perturbation which describes the difference in reflectivity observed by two shots. We derive an expression for the image perturbation that drives a migration velocity analysis procedure based on a linearization of the wave-equation with respect to the model parameters. Synthetic 2D examples show promising results in retrieving errors in the velocity model. This methodology can be directly applied to 3D.

¹Center for Wave Phenomena, Colorado School of Mines
²Eni E & P
2.2 Introduction

Seismic imaging aims to construct an image of geologic structures in the subsurface from reflection data recorded at the surface of the Earth. For constructing such an image, one needs a model for computing the Green’s functions that describe the wave propagation from source and receiver positions to every point in the subsurface. If we assume a linear, acoustic, and constant-density model, the velocity is the only parameter that governs the wave propagation. The correct velocity model is unknown and must be estimated from the data to obtain an accurate image of the reflectors in the subsurface, especially for highly heterogeneous geologic configurations.

Estimating the velocity model from the recorded data is referred to as velocity analysis. The problem is intrinsically nonlinear (because the wave-equation is a nonlinear function of its coefficients) and it is usually formulated as an optimization problem in which the correct velocity model minimizes an objective function, that is a measure of the model error. Two different classes of methods for estimating the wave propagation velocity have been discussed in the literature: data-domain methods, which we refer to as waveform inversion (WI) (Pratt, 1999; Tarantola, 1984; Woodward, 1992) and image-domain methods, usually referred to as migration velocity analysis (MVA) (Sava and Biondi, 2004; Shen and Symes, 2008; Symes, 2008; Yilmaz, 2001). WI operates in the data domain and iteratively updates the model parameters until the energy of the residual between simulated and recorded data is minimized. The WI objective function is characterized by numerous local minima (Bunks et al., 1995) and a good initial guess of the velocity model is necessary in order to converge to the correct solution. Migration velocity analysis relies on the assumption that the reflectors in the subsurface must be imaged at the same locations by different experiments. When the correct velocity model is used, the similarity between the images constructed for different experiments must be maximum. The similarity of the migrated images (i.e., the semblance principle (Al-Yahya, 1989; Sattlegger, 1975; Symes, 2008)) constitutes the criterion for designing an objective function that measures the quality of the velocity model.
Evaluating the semblance of a set of images requires constructing common-image gathers, i.e., new images indexed in spatial position and an extension parameter, e.g., incidence angle, space/time lags (Rickett and Sava, 2002; Sava and Fomel, 2006; Yang and Sava, 2010) or experiments (Soubaras and Gratacos, 2007; Xie and Yang, 2008). In this paper, we present a measure based on the differential semblance criterion (Symes and Carazzzone, 1991) for evaluating the correctness of the velocity model in the framework of migration velocity analysis. Our method operates in the image-domain and computes the displacement vector field between two images. The displacement vector field is defined by a warping transformation of one image into the other and is pointwise measured by local crosscorrelations of the two images. The displacement vector field measures the apparent movement of an image with respect to its neighbor and can be used to extract the relative perturbation in reflectivity observed as a function of the shot position.

CIGs constructed at fixed lateral positions are unable to capture the full multidimensional apparent movement of the image point as a function of the extension parameter (Xie and Yang, 2008), for example, vertical and horizontal subsurface offset gathers must be combined together to completely estimate the movement of the image point in the subsurface when the structures are not mildly dipping (Biondi and Symes, 2004). Our technique measures the full vectorial shift of the image point and restates the semblance principle in terms of the consistency between the structural information in the image and the apparent displacement of image points as a function of experiments.

In the following sections, we describe the semblance principle, we review the wave-equation migration velocity analysis (WEMVA) procedure, and then we introduce our approach for measuring the consistency of the velocity model based on the apparent shift between two images from adjacent shots.

2.3 Image Similarity, Warping, and Velocity Errors

In inverse problems, the goal is the reconstruction of the distribution of the model parameters from indirect measurements. Using the measurements and synthetic data generated in
a trial model, one can define different measures of fit, which indirectly measures the quality of that particular model. These measures are based on specific criteria, which mathematically describe either our expectations in the ideal case, i.e., the simulation of synthetic data in the exact model, or the a priori information about intermediate quantities, e.g., the time invariance of the interfaces in the subsurface. In migration velocity analysis, we use the semblance principle (Al-Yahya, 1989; Sattlegger, 1975) to encode the a priori information we have about the structures in the subsurface (e.g. their time-invariance). We show that image warping allows us to measure similarity between images, thus implementing the semblance principle, and supplies a measure of image perturbation that can be linked to errors in the model parameters.

2.3.1 The Semblance Principle

Figure 2.1: Migrated images can in principle be ordered in a hypercube and indexed by spatial location \(x \), experiment number \(e \), and extension parameter \(\alpha \). By staking along one of the axes we reduce the dimensionality of the data and are able to analyze them. For example, we can stack along the extension parameter axis (e.g., reflection angle) and evaluate model accuracy by measuring the semblance at discrete positions in space between images corresponding to all experiment indices (a). Alternatively, by slicing together images from all experiments, we obtain common-image gathers (e.g., angle-domain common-image gathers), which we usually analyze at fixed spatial locations (b). A third option is to stack over the extension parameter and to analyze all points in the image for two (or a small number of) images obtained from nearby experiments (c). This last solution is what we propose in this paper.
In seismic migration, the velocity model is assumed to be known but in reality it represents the main unknown and has to be estimated from the data. Migration velocity analysis measures the similarity of the different migrated images (which are obtained by exploiting the redundancy of the data) using the semblance principle (Al-Yahya, 1989; Sattlegger, 1975). The semblance principle relies on the invariance of the subsurface with respect to the seismic experiments: since the model that generates the data is unique and time-invariant, different experiments must image the same structures. The quality of the migration result is assessed by constructing an image cube that collects the images as a function of the spatial coordinates x and experiment $R(x,e)$ or extension parameter $R(x,\alpha)$. The variable e indexes the experiments and can represent the shot number or the ray-parameter in plane-wave migration; the extension parameter α can represent the reflection angle or the subsurface offset. The current practice consists in analyzing fixed spatial locations and considers all the experiments (Figure 2.1(a)) or all the values of the extension parameter (Figure 2.1(b)). If the velocity model is correct, the images show invariance along these dimensions in the image cube. This property is true in a kinematic sense: the reflection coefficients (Aki and Richards, 2002), which depend nonlinearly on the incidence angle, are neglected by this methodology. Several choices of domain are available for analyzing the invariance in the image cube, for example the extended image domain (Rickett and Sava, 2002; Symes, 2008; Vasconcelos et al., 2010), the reflection angle domain (Biondi and Symes, 2004; Sava and Fomel, 2006), and the experiment domain (Chavent and Jacewitz, 1995; Mulder and Kroode, 2002; Soubaras and Gratacos, 2007; Xie and Yang, 2008).

The semblance principle can be implemented in different fashions:

1. In conventional semblance (Taner and Koehler, 1969), the energy of the stack of the migrated images measures the quality of the velocity model; the correct velocity model maximizes that energy;

2. In differential semblance (Symes and Carazzone, 1991), the energy of the first derivative along the extension axis measures the correctness of the velocity model; the correct
model minimizes the energy.

Both conventional and differential semblance are customarily implemented using gathers, e.g., common-reflection angle, in order to analyze the consistency between different results. Inconsistency in the migrated images appears as moveout in the gathers; the moveout is used for estimating the velocity error and for computing the velocity update for the current model. If we consider common-image gathers, we have the situation depicted in Figure 2.1(a) and Figure 2.1(b). Since differential semblance considers similarities between adjacent experiments, in principle we can work without gathers in an iterative fashion by considering pairs of experiments (Figure 2.1(c)). This approach allows one to analyze all the points in the aperture of the two experiments at the same time, instead of constraining the appraisal of the velocity model at specific spatial locations where the CIGs have been constructed.

2.3.2 Image Difference, Image Warping, and Image Perturbation

In this work, we explore a method for measuring similarity in the experiment domain. The experiment index may represent the shot number or the plane-wave ray-parameter, and we consider all points in the aperture shared by adjacent shot-gathers. By “adjacent” we mean shot-gathers that illuminate the same portion of the subsurface and whose images show the same structures. The semblance principle is implemented in a differential sense by measuring the constructive interference of two images.

The easiest way to measure similarity between two migrated images R_i and R_j is to compute the difference

$$\Delta R(x) = R_j(x) - R_i(x),$$

(2.1)

where the subscripts i and j denote the shot-index and $x = (x, y, z)$ is the position vector in the image domain. The signal ΔR represents the perturbation in the imaged reflectivity observed because of the change in shot position. If the velocity model is accurate, ΔR must be minimum because of the invariance of the reflector positions with respect to the shot location.
Image difference is a straightforward measure of similarity but, analogously to difference in the data domain, it is prone to cycle skipping. If the model is inaccurate, the difference in the position of the imaged reflectors can exceed half a cycle of the dominant wavelength and produce cycle skipping in the image domain. We address this problem using image-warping. Image-warping estimates a vector field $u(x)$ that describes the apparent shift between two images by assuming the following relationship between the signals:

$$R_j(x) = R_i(x + u(x)).$$ \hspace{1cm} (2.2)

Warping vectors for multidimensional signals are estimated through an iterative search of the maximum of local correlations (Hale, 2009). Hale et al. (2008) show an application of this method for estimating subsample shifts in time-migrated images for time-lapse monitoring.

If we assume that the warping field $u(x)$ is small, we can rewrite equation 2.2 using a Taylor series expansion as

$$R_j(x) \approx R_i(x) + \nabla R_i(x) \cdot u(x),$$ \hspace{1cm} (2.3)

where $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})^T$ represents the gradient operator. Equation 2.3 allows us to rewrite equation 2.1 as

$$\Delta R(x) \approx \nabla R_i(x, s) \cdot u(x).$$ \hspace{1cm} (2.4)

Notice that equation 2.4 depends on a single image and it is thus intrinsically more robust against the cycle skipping problem. The accuracy of the approximation depends on the estimation of the warping field.

The image gradient $\nabla R_i(x)$ is a vector that points in the direction of maximum increase in the image, and thus it is normal to the imaged reflector. By inspection, we observe that Equation 2.4 is zero when the displacement vector field and the image gradient are orthogonal or, in terms of accuracy of the velocity model, the structural features (imaged reflectors) in migrated images obtained from adjacent experiments constructively interfere along the slope of the imaged reflector. Figure 2.2 shows the orientation of the dip and warping vector field for a horizontal interface and different perturbations of the velocity
Figure 2.2: Horizontal density interface imaged using a single shot at $x = 2$ km and 800 receivers spaced 10 m at every grid point at the surface. The angle between the dip (solid arrows) and displacement vector field (dashed arrow) indicates a velocity error: (a) velocity too low, (b) correct velocity, and (c) velocity too high. The displacement vector field is computed using a second image obtained from a shot located at $x = 2.05$ km.
model. The dip field can be estimated using, for example, plane-wave destruction (PWD) filters (Fomel, 2002) or gradient-squared tensors (van Vliet and Verbeek, 1995) whereas the warping field is computed by maximizing spatial local crosscorrelation of the input images at every spatial location (Hale, 2009). For this example, we measure the dip field by means of gradient-squared tensors, which estimate the orientation of features in multidimensional images by calculating the eigenvalues of the tensor obtained from the outer product of the gradient of the image at every point (van Vliet and Verbeek, 1995). Figure 2.2 shows the dip (solid arrows) and displacement vector field (dashed arrows) computed from the migrated images of a horizontal reflector; the velocity error is constant across the model. Note that only when the velocity model is correct, are the two vector fields orthogonal at every image point. In order to obtain the image and the vector fields, we migrated two shots located at \(x = 2 \) km and \(x = 2.05 \) km, the horizontal interface is due to a density contrast and the velocity model is constant. The same reasoning applies to 3D images, where at every image point the image gradient is normal to the tangent plane of the reflector.

In order to design an inversion procedure, we need to link the image perturbations in equation 2.1 and 2.4 to an associated perturbation in the model. We use linearized wave-equation migration velocity analysis (WEMVA) (Biondi and Sava, 1999; Sava and Biondi, 2004) to establish this link. Because of its simplicity, the image difference in equation 2.1 is suitable to derive the expression of the WEMVA operator for inversion. However, image difference is vulnerable to cycle skipping. The image-warping approximation in equation 2.4 of the image difference perturbation represents a more robust alternative for inversion.

2.3.3 Wave-Equation Migration Velocity Analysis

We briefly review the theory of the linearized wave-equation migration velocity analysis (WEMVA) approach (Biondi and Sava, 1999; Sava and Biondi, 2004) and then derive the linear operator that links the perturbation in the model \(\Delta s \) to the image perturbation \(\Delta R \) that we defined in the previous sections. A detailed presentation of the WEMVA procedure can be found in Sava and Biondi (2004); implementation aspects are described by Sava and
Let us consider a reference model s and the associated wavefield $W(s, \omega)$, where ω represents temporal frequency. In the following, we drop the dependence on ω and s for the sake of readability. By introducing a perturbation Δs in the model, we perturb W with a scattered wavefield δW. The mathematical expression for the scattered wavefield δW can be obtained once we define the form of the extrapolation operator E and scattering operator S. Under the assumption that the perturbation is “small”, we can use the linear Born scattering assumption to link the background and scattered wavefield. Following Sava and Biondi (2004), we denote by E the one-way downward continuation extrapolation operator and by S the associated Born scattering operator. We can then express the wavefield perturbation in terms of a linear operator applied to the model perturbation:

$$\delta W = G\Delta s,$$

where $G = (1 - E)^{-1} ES$ and 1 represents the identity operator (Sava and Biondi, 2004).

The image R depends on the slowness model s through the source and receiver wavefields W_S and W_R

$$R = \sum\omega \overline{W}_SW_R,$$

where the overline indicates the complex conjugate operator. The image R is linear in both wavefields W_S and W_R; the imaging operator multiplies the two wavefields and stacks over the frequency axis, formally we can rewrite equation 2.6 as

$$R = I(W_S; W_R),$$

where I is the bilinear imaging operator. Despite the linearity of the image with respect to the wavefields, the image R depends nonlinearly on the model s; the nonlinearity comes from the nonlinear dependence on the parameters of the wave-equation, which we have to solve for computing the source and receiver wavefields W_S and W_R. To linearize the relationship between the image and model, we assume a “small” perturbation Δs that would produce small perturbations in the wavefields. By perturbing equation 2.7 with respect to s
the slowness field and neglecting second order terms, we obtain

\[R + \delta R \approx \mathbf{I}(W_S, W_R) + \mathbf{I}(\delta W_S, W_R) + \mathbf{I}(W_S, \delta W_R), \]

(2.8)

where \(\delta W_S \) and \(\delta W_R \) are the linear perturbations in the source and receiver wavefields resulting from a perturbation \(\Delta s \) in the slowness model. \(\delta R \) represents the perturbation that would be observed in the image. Using equation 2.8, we can relate the image perturbation \(\delta R \) and the wavefield perturbation by removing the background image from the left and right side of the equation to obtain

\[\delta R \approx \mathbf{I}(W_R) \delta W_S + \mathbf{I}(W_S) \delta W_R, \]

(2.9)

where we highlighted that the imaging operator depends on the background wavefields \(W_S \) and \(W_R \) and acts on the wavefield perturbations \(\delta W_S \) and \(\delta W_R \). By using equation 2.5, we can link the image perturbation \(\delta R \) to the model perturbation \(\Delta s \) through a cascade of linear operators

\[\delta R = (\mathbf{I}(W_R) \mathbf{G}_S + \mathbf{I}(W_S) \mathbf{G}_R) \Delta s, \]

(2.10)

where \(\mathbf{G}_{S,R} \) represents the extrapolation/Born scattering operator for the source (S) or receivers (R) side.

We estimate the image perturbation \(\Delta R \) for our inversion scheme starting from the difference of adjacent shots. Let us consider two images \(R_i = R_i^c + \delta R_i \) and \(R_j = R_j^c + \delta R_j \). Each of them is the superposition of the image in the background correct model (\(R_i^c \) and \(R_j^c \)) and the image perturbation caused by the model perturbation \(\Delta s \) (\(\delta R_i \) and \(\delta R_j \)); then the difference of the two images is

\[\Delta R = R_j(x) - R_i(x) = R_j^c(x) - R_i^c(x) + \delta R_j - \delta R_i. \]

(2.11)

For shots that illuminate the same portion of the subsurface, the difference between the images obtained using the correct model is negligible compared to perturbation terms, and equation 2.11 reduces to

\[\Delta R \approx \delta R_j - \delta R_i. \]

(2.12)
Equation 2.12 shows that under the assumption of small separation between the shots, the image difference \(R_j(x) - R_i(x) \) gives us an approximation of the image perturbation we need for the WEMVA operator. In operator notation, the estimated image perturbation is obtained by applying the linear difference operator \(D \) to the migrated images

\[
\Delta R \approx D(R_i, R_j).
\] (2.13)

Finally, by combining equation 2.10, 2.12, and 2.13 we can link the image perturbation \(\Delta R \) to the model perturbation \(\Delta s \) through a linear operator

\[
\Delta R = L \Delta s,
\] (2.14)

where \(L = D \left(I(W_R) G_S + I(W_S) G_R \right) \) is the cascade of the scattering operator \(G_{S,R} \) that relates the perturbation in the model \(\Delta s \) to the perturbation in the wavefields \(\delta W_{S,R} \), the imaging operator \(I \) that extracts the image from the wavefields, and the difference operator in the shot domain \(D \).

2.3.4 Workflow

We implement a nonlinear inversion scheme based on the solution of a sequence of linearized problems. Each linearized problem is solved using a standard conjugate gradient algorithm. Given an initial velocity model, we compute the associated migrated images for a pair of adjacent shot-gathers. From the migrated images, we compute the displacement vector field that warps one image into the image obtained from the adjacent shot. We also compute the smooth image gradient for each migrated image. The smooth gradient is the cascade of the \(\nabla \) operator and a low pass Gaussian filter to avoid the amplification of high-frequency random noise. The dot product between the image gradient and the displacement field associated with the relative shot gives the image perturbation that drives the linearized migration velocity analysis algorithm. The linearized migration velocity analysis procedure (Sava and Biondi, 2004) links the perturbation in the slowness model to the image perturbation via a linear operator. The goal is to solve the system:
\[\mathbf{L}\Delta s = \Delta R, \]

where the operator \(\mathbf{L} \) and the image perturbation \(\Delta R \) are defined in the previous sections. We solve the linear problem using the conjugate gradient method. The solution of linear problem is an estimate of the model perturbation. This perturbation is added to the current model and we iterate the steps above until the stopping criterion is satisfied. The intermediate model update modifies the operator \(\mathbf{L} \) and thus allows us to solve the nonlinear problem through a series of linearized approximations. For each linearized step, we perform 5 conjugate gradient iterations. The nonlinear inversion is performed by iterating until a certain criterion is met: either the energy of the image perturbation \(\Delta R \) falls below a certain threshold or a maximum number of iterations is reached; in this paper, we fix the maximum number of iterations.

2.4 Numerical Examples

Equation 2.3 shows that image-warping is an approximation of the image difference if we assume that the warping vector field \(\mathbf{u} \) is able to track the apparent displacement between the two images. Nonetheless, the image perturbation obtained from image-warping depends on only one image and is thus intrinsically more robust against cycle-skipping. We show a comparison between the sensitivity kernels obtained by backprojecting the image perturbation obtained from the forward WEMVA operator, from image-warping, and from image difference, and demonstrate the superiority of image-warping. We apply our methodology to two inversion tests. In the first one, we consider a simple model with a stack of horizontal density interfaces in a vertical velocity gradient; the correct model is perturbed by two Gaussian anomalies with opposite sign. We conclude the section showing the inversion results obtained on the Marmousi dataset using a limited number of shot-gathers. Our methodology is able to correct the model and obtain a more geologically plausible image.
Figure 2.3: Vertical section of a 3D model with azimuthal symmetry. (a) Density model, (b) background slowness model, and (c) slowness anomaly.
Figure 2.4: (a), (c), and (e) show the backprojection of image perturbations for a positive value of the anomaly in Figure 2.3(c). The image perturbations are obtained by forward WEMVA operator, image-warping, and image difference respectively. (b), (d), and (f) show the backprojections obtained for a negative anomaly. Image-warping consistently produces smoother backprojections that better approximate the ideal cases in (a) and (b). The oscillations in the backprojections of image differences are connected with cycle-skipping problems.
2.4.1 Sensitivity to Cycle-Skipping and Backprojections

Let us consider the model in Figure 2.3. The reflecting interface in Figure 2.3(a) is due to a density contrast. We model the data with a two-way finite-difference algorithm in the vertical gradient of slowness in Figure 2.3(b). We migrate the data with a downward continuation operator (Stoffa et al., 1990) and different amplitudes of the velocity anomaly in Figure 2.3(c). We migrate two shots located at \(x = 2 \) km and \(x = 2.05 \) km for each perturbation, compute the image perturbations using image difference and image-warping, and compute the backprojections using the adjoint of the WEMVA operator. The columns of Figure 2.4 show backprojection for different signs of the Gaussian anomaly; the left column is the case of a fast anomaly, the left column is the case of a slow anomaly. The peak value of the anomaly is \(\pm 0.5 \) km/s. The rows of Figure 2.4, from top to bottom, show the backprojection in the ideal case, where the image perturbation is obtained from the forward WEMVA operator, the backprojection obtained using the image perturbation computed using image-warping, and finally the backprojection obtained using the image difference. Observe that image-warping leads to smoother backprojections that better approximate the ideal results. The highly oscillatory behavior of the backprojections obtained from image difference is due to cycle skipping in the image domain. The warping vector field encodes the shift between the two images, the image perturbation obtained by image-warping depends on a single image and is thus immune from cycle skipping problems as long as the warping vector field is accurately estimated.

The backprojections of the estimated image perturbations contain sidelobes, which have been observed in other migration velocity analysis algorithms (Fei and Williamson, 2010); we conjecture that these artifacts are attributable to the actual nonlinearity of the estimated image perturbation with respect to the model parameters.
Figure 2.5: Model for the inversion test: (a) stack of layers with alternating values of density (b) correct slowness model.

Figure 2.6: Slowness model: (a) initial and (b) inverted after 13 nonlinear iterations.
2.4.2 Inversion Test

As mentioned before, the estimation of model parameters for wave phenomena is a nonlinear problem because the wave-equation is nonlinear in the model parameters (slowness, density, etc.). In order to test our inversion methodology, we use custom implementation of a nonlinear scheme based on the conjugate gradient algorithm (Vogel, 2002), in which the nonlinear problem is first linearized and an approximate solution is obtained. The approximate solution is then used to obtain a new linearization and then a new approximate solution, and so on. For every nonlinear iteration, we recompute the images and solve a linearized problem assuming the new background medium. The model for the inversion is shown in Figure 2.5: in Figure 2.5(a), the reflectors arise from density contrasts and, in Figure 2.5(b), the correct slowness model is a simple vertical gradient. We consider 24 pairs of shots at the surface; the receiver are evenly spaced by 20 m at each grid point at the surface. The shots in each pair are 50 apart and the spacing between the pairs is 250 meters; the shot pairs do not overlap.

The initial and updated velocity model are shown in Figure 2.6. The data for the inversion test are computed through full-acoustic time-domain finite-difference modeling and Gaussian random noise is added to each shot-gather separately. The signal-to-noise ratio is equal to 10. Absorbing boundary conditions are implemented to avoid surface-related multiples; the internal multiples generated by the reflectors in the model are not subtracted from the data and constitute additional source of noise. In the examples, the absolute value of the peak of the velocity anomaly is 200 m/s, which is 10% of the minimum value of the background velocity gradient. Nonetheless, the shape of the velocity anomaly causes severe focusing/defocusing of the wavefield (depending on the sign of the anomaly), which makes migration velocity analysis challenging, especially in the initial steps.

We run a nonlinear inversion involving five conjugate-gradient iterations for each linearized step. We stop after 13 iterations, when the objective function starts oscillating, which indicates we reached a minimum of the objective function. Figure 2.6 shows that
the initial Gaussian-shaped anomalies are smoothed out by the migration velocity analysis procedure. Figure 2.7 shows the resulting migrated images for the initial velocity model and that after 13 nonlinear iterations. Observe the improved focusing of the image, especially for the deepest reflectors. Figure 2.8 shows the comparison of the correct model (solid line) with the initial (dotted line) and inverted (dashed line) slowness model at $x = 2.5$ km and $x = 5.5$ km. The inversion partially corrects the anomaly but does not completely eliminate it. In Figure 2.8, we observe that the algorithm is more effective in the case of a positive slowness anomaly rather than a negative anomaly. We speculate that this behavior may be due to the fact that the image contains more energy at $x = 5.5$ km than at $x = 2.5$ km because of the opposite effects of the two anomalies on the imaged reflectors. Nonetheless, the correction applied to the slowness model is sufficient to flatten the image of the reflectors and remove the triplications from the image.

Figure 2.9 shows the decrease of the energy of the image perturbation with the number of iterations. After 13 iterations the objective function increases, which means that we reached the minimum and the algorithm starts oscillating around the minimum. We stopped the inversion when the objective function stops decreasing after 14 iterations and show the result after 13 iterations. The nonzero value of the energy of the image perturbation results
Figure 2.8: Comparison of the initial (dotted line), inverted (dashed line), and exact (solid line) slowness model at (a) \(x = 2.5 \) km and (b) \(x = 5.5 \) km. The inversion reduces the anomaly but does not eliminate it. Nonetheless, the reflectors in Figure 2.7(b) are flattened.

Figure 2.9: The decrease of the energy of the image perturbation indicates that we are approaching the correct model. We stopped the inversion after 13 iterations because the objective function starts oscillating, which indicates that we reached a minimum of the objective function.
from a number of factors: the random noise in the data, internal multiples, and the size of the local window used to compute the dip and displacement field; all of them constrain the accuracy, resolution, and sensitivity we can achieve. No regularization is implemented; the footprint of the acquisition geometry is clearly visible in the inversion result, and it represents an additional source of noise.

2.4.3 Local Marmousi Inversion

![Macro slowness model](image_a) for the Marmousi dataset and (b) slowness perturbation for the model in (a).

In this section, we consider a more complex synthetic example. Figure 2.10 shows the correct macro velocity model for the Marmousi dataset and the anomaly used in the inversion test. The model in Figure 2.10(a) is obtained by smoothing the exact Marmousi with a 15-sample vertical and 30-sample horizontal triangular filter. We generate the data by single-scattering Born finite-difference modeling; the reflectivity profile is the vertical derivative of the exact Marmousi model. We want to show the ability of our method of recovering model perturbation using a limited number of experiments (shots in this case); we consider 12 shots, evenly spaced by 0.04 km at the surface; the first shot is positioned at \(x = 0.96 \) km. The receivers are spaced 0.008 km on the surface and they are located at every grid point.

The anomaly is Gaussian-shaped with peak velocity 0.2 km/s and is subtracted from the correct velocity field. The perturbation in slowness is obtained by converting to slowness the correct and perturbed model and taking the difference of the former from the second.
Figure 2.11: Image obtained using the correct slowness model (a), initial migrated image (b), migrated image after 20 nonlinear iterations (c). We consider 12 shots, evenly spaced by 0.04 km at the surface; the first shot is positioned at $x = 0.96$ km. The receivers are spaced 0.008 km on the surface and they are located at every grid point. Observe the improved continuity of the bottom reflector and the correction of the distortion of the middle dipping interfaces at a lateral position about $x = 2$ km.
Notice the complicated shape that comes from the nonlinear relationship between velocity and slowness. The minimum amplitude of the perturbation is about \(-0.03\) s/km, which is about 10% of the local background slowness but other areas are more strongly perturbed. Figure 2.11(a) shows the image of the 12 shot-gathers considered in the correct model; by comparing the correct image with the image obtained using the initial model (Figure 2.11(b)) we observe that several structural features are distorted and the continuity of some reflectors broken (compare reflectors at lateral position \(x = 2\) km). After 20 nonlinear iterations we obtain the image in Figure 2.11(c): the bottom reflector is now more continuous and both the shape and amplitude of the dipping reflector in the middle section have been corrected. We also want to stress that these results do not involve any regularization or shaping of the estimated anomaly, which would greatly speed up convergence. Figure 2.12 shows the comparison of the exact perturbation used in the test with the inverted anomaly. Our linearized migration velocity analysis algorithm is able to recover the location of the anomaly and the magnitude of the perturbation. Figure 2.13 shows the comparison of the initial (dotted line), inverted (dashed line), and correct (solid line) slowness model at \(x = 2.5\) km, that is where the anomaly is the strongest. Observe that the inversion reduces the discrepancy between the initial and correct model. Figure 2.14 shows the evolution of the energy of the image perturbations with the number of iterations, which rapidly decreases.
to 10% of the initial value and then flattens. We want to emphasize that we are able to correct the anomaly in the model using a small number of shots despite the lack of full illumination whereas methods based on focusing measures (i.e. migration velocity analysis based on extended images) need complete angular coverage to evaluate focusing in the image domain.

Figure 2.13: Comparison of the initial (dotted line), inverted (dashed line), and exact (solid line) slowness model at $x = 2.5$ km. Observe that inversion corrects the large discrepancy between the initial and correct model.
2.5 Discussion

Our image perturbation approximates the image difference but is by construction more robust against cycle-skipping in the image domain. Our image-warping approximation can also be interpreted as a measure of constructive interference of pairs of images using the warping field that relates them and the structural dip. The velocity error produces shifts of the image points, which can be observed in the image cube as moveout as a function of an extension parameter (e.g., the reflection angle or the shot index). The moveout represents a velocity error indicator and is inverted for updating the velocity model. In the literature (Biondi and Symes, 2004; Sava and Fomel, 2006; Xie and Yang, 2008), the assumption of a shift along the normal to the reflector is commonly made; however, as Xie and Yang (2008) point out, this is just an approximation in a general case of complex geology and velocity model. Moreover, the residual moveout is often measured along just the vertical direction, i.e., in CIGs, rather than along the normal to the reflector, and then converted into the normal residual moveout using simple trigonometry. That approach relies on the assumption that the dip of the reflector is independent of the velocity in the overburden. In general, this is not true. Our approach directly evaluates the degree of constructive interference of adjacent experiments and does not rely on any assumption about the direction of the shift.
of the image point in the migrated domain. Moreover, we are able to measure the 3D shift of the image point between the two experiments and then capture the complete kinematic information.

Migration velocity analysis is based on kinematic assumptions: the correct velocity model returns a prestack image cube characterized by horizontal events along the experiment axis. Note that we say horizontal and not constant in amplitude, highlighting the kinematic nature of the conventional semblance principle. As already discussed by Mulder and Kroode (2002), the amplitudes of images from nearby experiments are likely to be similar but not equal. Reflection coefficients should be taken into account, and the velocity model itself, if it is highly heterogeneous, can lead to important differences in the amplitudes.

The measure of velocity error is independent of the migration algorithm and in principle either a one-way or a two-way velocity update engine can be used. The current implementation of the our WEMVA procedure relies on a one-way operator; the extension to two-way operators is subject of ongoing research.

Compared to the data domain, the image domain is more robust but not immune from cycle-skipping. If the current velocity model is reasonably close to the true model, a cycle skip of the two images is unlikely. The chance of cycle skipping depends not only on the velocity model but also on other factors such as the shot positions and the frequency bandwidth of the signals. By increasing the distance between the shots, we violate the assumption of sharing the same aperture and the potential for cycle skipping grows. Increasing the bandwidth of the signals reduces the wavelength, thus further constraining the maximum distance between adjacent experiments. The shot distance enhances the the difference between the apertures of the shots, thus the perturbation computed by image difference can experience both cycle skipping and incomplete event cancellation, especially for strong and shallow reflectors. The construction of the image perturbation as the first order term of a Taylor series expansion removes the sensitivity to this source of cycle-skipping. Since the warping vector field captures the information about the shift between the two images, our ap-
approach is intrinsically more robust against cycle-skipping. The correlation of two signals has lower bandwidth than both the input signals: the spectrum of the correlation is equal to the product of the spectra of the input signals. Image warping is based on local correlations; the warping vector field is extracted by picking the maximum of the local correlations between the input images. The shift information has by construction lower resolution with respect to direct image difference. This lack of resolution gives our inversion algorithm robustness against cycle-skipping away from the optimal solution but limits the amount of spatial details we can recover. The quick convergence in the both inversion tests and the inability to perfectly flatten the horizontal reflectors in the first example describe the resolution limitations of the method. Moreover, as Larner and Celis (2007) point out, the resolution power of conventional semblance method comes from stacking over many experiments. Our approach considers only two experiments at the time and is derived from differential semblance. Thus, we observe the expected trade-off between robustness against cycle-skipping and resolution.

Finally, the shot-by-shot approach allows one to potentially bootstrap the MVA procedure without first migrating the whole dataset; thus we can update the velocity model in an iterative fashion with respect to shots. An iterative shot-based inversion has been already proposed in the context of waveform inversion in the data-domain (see (Chauris and Plessix, 2012)); in this paper, we do not iteratively update the model for each consecutive pair of experiments, we instead opt for a more traditional inversion procedure and combine the partial updates from different pairs of shots into a global model update.

Several critical points must be carefully handled. First, since we are using only pairs of experiments, the signal-to-noise ratio (SNR) can be low and the effectiveness of the algorithm may be hampered by the quality of the data. The sensitivity to the signal-to-noise ratio can be addressed using shot-encoding techniques (Morton and Ober, 1998; Perrone and Sava, 2012a; Soubaras, 2006; Whitmore, 1995; Zhang et al., 2005) under the assumption that the different experiments are contaminated by uncorrelated noise. Second, because of cycle skipping between images, our approach can be ineffective if the shots are too far from
each other, the velocity model is very inaccurate, or the reflector geometry is complex (e.g. around fault zones or in areas with conflicting dips). The similarity of nearby experiments is an assumption of every DSO-like optimization scheme; if the particular acquisition geometry or the complex wavepaths create shadow zones or illumination holes, DSO is likely to underperform. Discrepancies in the images are due not only to velocity errors but also to the different set up of the two experiments; if the experiment sampling is coarse (e.g. distant shots or plane waves that have very different ray-parameters), we need to guarantee that adjacent experiments share the same aperture. The size of the local window used for computing the image displacements should increase with decreasing depth to capture the apparent larger separation closer to the shot positions. Two shots can be considered adjacent for a deep reflector and not so for a shallow one, since the aperture of the image changes with depth. A further remark is about the difference between 2D and 3D data: in 2D we can clearly specify an order for the shots along a line, in 3D we cannot define a unique ordering since the shots can be placed over a two-dimensional surface, and we do not address the possible strategies to compare shots in a 3D acquisition in this paper. In the shot-domain, diving waves create images that do not correspond to reflection events and that do not satisfy the warping relationship assumed in this paper. Analogous considerations apply to multiply scattered wave and converted waves, which are not correctly handled by migration algorithms based on the Born approximation. Apparent reflectors associated with multiples and converted waves do not satisfy the warping relationship we assumed for the definition of the image perturbation and thus introduce a systematic bias in the inversion scheme. Also, in case of highly refractive velocity models (Stolk and Symes, 2004), the kinematic artifacts created by the imaging operator can severely affect the inversion, since they do not satisfy the criteria we assume for defining our velocity error measure.

2.6 Conclusions

We introduce a new measure of velocity errors for migration velocity analysis in the shot-domain. Our measure is based on an approximation of the difference between the
images obtained from adjacent shot-gathers. By using image-warping, we can relate the
two migrated images, and Taylor series expansion about one the two images with respect to
the warping vector fields can be used to effectively approximate the image difference. The
approximation depends on a single migrated image, and thus, by construction, it is more
robust against cycle-skipping in the image domain.

The image-warping approximation of the image difference is constructed by computing
the dot product between the gradient of the migrated image and the warping vector field that
describes the apparent shift between the two images. For planar reflectors, this quantity can
be intuitively related with the angle between the orientation of the reflector and the direction
of the displacement vector. When the migration model is accurate, the image gradient is
orthogonal to the warping vector field, i.e. the images constructively interfere along the slope
of the reflector.

Synthetic tests involving local velocity anomalies and severe focusing and defocusing
of the wavefields show the effectiveness of our approach for linearized migration velocity
analysis.

2.7 Acknowledgments

We would like to acknowledge the financial support provided by a research grant from eni
E&P. We also thank Jacopo Panizzardi for insightful and helpful comments. The reproducible
numeric examples use the Madagascar open-source software package (http://www.ahay.org).
We thank Jeff Godwin for integrating the Mines JTK (https://github.com/dhale/jtk) and
Madagascar.
CHAPTER 3
WAVEFIELD TOMOGRAPHY BASED ON LOCAL IMAGE CORRELATIONS

A paper submitted to Geophysical Prospecting
F. Perrone1, P. Sava1, and J. Panizzardi2

3.1 Summary

The estimation of a velocity model from seismic data is a crucial step for obtaining a high-quality image of the subsurface. Velocity estimation is usually formulated as an optimization problem where an objective function measures the mismatch between synthetic and recorded wavefields and its gradient is used to update the model. The objective function can be defined in the data-space (as in full-waveform inversion) or in the image-space (as in migration velocity analysis). In general, the latter leads to smooth objective functions, which are monomodal in a wider basin about the global minimum compared to the objective functions defined in the data space. Nonetheless, migration velocity analysis requires construction of common-image gathers at fixed spatial locations and subsampling of the image in order to assess the consistency between the trial velocity model and the observed data. We present an objective function that extracts the velocity error information directly in the image domain without analyzing the information in common-image gathers. In order to include the full complexity of the wavefield in the velocity estimation algorithm, we consider a two-way (as opposed to one-way) wave operator, we do not linearize the imaging operator with respect to the model parameters (as in linearized wave-equation migration velocity analysis), and compute the gradient of the objective function using the adjoint-state method. We illustrate our methodology with a few synthetic examples and test it on a real 2D marine streamer dataset.

1Center for Wave Phenomena, Colorado School of Mines
2Eni E & P
3.2 Introduction

Seismic imaging involves the estimation of wave propagation velocities in the subsurface from seismic data recorded at the surface. Seismic velocities are related to other physical parameters (for example, density and compressibility, which characterize the lithology of the Earth), and rock-mechanics parameters (for example, porosity and fluid overpressure, which are crucial in reservoir engineering) (Carcione, 2007).

Wave-equation tomography (Biondi and Sava, 1999; Tarantola, 1984; Woodward, 1992) is a family of techniques that estimate the velocity model parameters from finite bandwidth signals recorded at the surface. The inversion is usually formulated as an optimization problem where the correct velocity model minimizes an objective function that measures the inconsistency between a trial model and the observations. The objective function can be defined either in the data-space (full-waveform inversion) or in the image-space (migration velocity analysis).

Full-waveform inversion (FWI) (Pratt, 1999; Sirgue and Pratt, 2004; Tarantola, 1984) addresses the estimation problem in the data-space and measures the mismatch between the observations and simulated data. Full-waveform inversion reconstructs a model that explains the data in the sense that the mismatch between acquired and simulated waveforms is minimized. By matching both traveltimes and amplitudes, full-waveform inversion allows one to achieve high-resolution (Sirgue et al., 2010). Nonetheless, a source estimate is needed, the physics of wave propagation (for example, isotropic vs. anisotropic, acoustic vs. elastic, etc.) must be correctly modelled, and a good parametrization (for example, impedance vs. velocity contrasts) is crucial (Kelly et al., 2010). Moreover, an accurate initial model is key to avoid cycle skipping and converge to the global minimum (instead of a local minimum) of the objective function.

Because of the nonlinearity of the wavefields with respect to the velocity model, the objective function in the data domain is highly multimodal (Santosa and Symes, 1989), and local optimization methods can easily get trapped into local minima and fail to converge to
the correct model. This is particularly true for reflection full-waveform inversion. Refraction full-waveform inversion focuses on diving waves and mutes the data, retaining only the diving energy (Pratt, 1999). This leads to a better-behaved objective function but requires very long offsets in order to record the refracted energy. Moreover, this approach limits the depth at which a robust inversion result can be expected.

Migration velocity analysis (MVA) (Al-Yahya, 1989; Albertin et al., 2006; Biondi and Sava, 1999; Chavent and Jacewitz, 1995; Faye and Jeannot, 1986; Fowler, 1985; Sava et al., 2005) defines the objective function in the image space and is based on the semblance principle (Al-Yahya, 1989; Sattlegger, 1975). If the velocity model is correct, images from different experiments must be consistent with each other because a single Earth model generates the recorded data. A measure of consistency is usually computed through conventional semblance (Taner and Koehler, 1969) or differential semblance (Symes, 1993; Symes and Carazzone, 1991). These two functionals analyze a set of migrated images at fixed locations in space; they consider all the shots that illuminate the points under investigation. Migration velocity analysis leads to smooth objective functions and well-behaved optimization problems (Symes, 1991; Symes and Carazzone, 1991) and is less sensitive than full-waveform inversion to the initial model. On the other hand, because we do not use amplitudes in the imaging step, the estimated model has lower resolution than the ideal full-waveform inversion result (Uwe Albertin, personal communication).

Migration velocity analysis measures either the invariance of the migrated images in an auxiliary dimension (reflection angle, shot, etc.) (Al-Yahya, 1989; Rickett and Sava, 2002; Sava and Fomel, 2003; Xie and Yang, 2008) or focusing in an extended space (Rickett and Sava, 2002; Sava and Vasconcelos, 2009; Symes, 2008; Yang and Sava, 2011b). All these approaches require the migration of the entire survey in order to analyze the moveout curve in common-image gathers or measure focusing at a specific spatial location. The dimensionality of the (extended) image space and computational complexity of the velocity analysis step rapidly explodes for realistic case scenarios. Moreover, because of the high
memory requirement for storing the partial information from each experiment, only a subset of the image points can be considered in the evaluation of the objective function. Illumination holes and/or irregular acquisition geometries can also impact the quality of the common-image gathers but no systematic study of this problem is reported in the literature to our knowledge.

Reverse-time migration (Baysal et al., 1983; McMechan, 1983) is routinely used in exploration geophysics because of its ability to correctly handle the full complexity of the wave propagation phenomena (under the assumption that the physics of wave propagation in the subsurface is correctly modeled). Its computational cost is nevertheless still prohibitive and limits its integration into a migration velocity analysis loop that requires the extraction of common-image gathers for moveout analysis. A migration velocity analysis procedure based on a full-wave propagation engine allows exploitation of more complex wave phenomena (e.g. overturning reflection, prismatic waves, and multiples) and increases the amount of information in the data that can be used (Farmer et al., 2006).

Reverse-time migration works only in common-shot and common-receiver configurations, so the choice of the shot-domain for performing migration velocity analysis with a two-way engine may be preferable. Here, we use the word “shot” in its broader sense to include synthetic shot-gathers like plane-wave sources (Liu et al., 2006; Stoffa et al., 2006; Whitmore, 1995; Zhang et al., 2005), random shot-encoded sources (Morton and Ober, 1998; Romero et al., 2000) or any other phase-/amplitude-encoded source (Perrone and Sava, 2012a; Soubaras, 2006) in the range of shot-profile migration. Reverse-time migration automatically and without additional costs outputs shot-domain common-image gathers; unfortunately, the migrated-shot domain is notoriously not optimal for velocity estimation because of migration artifacts (Stolk and Symes, 2004) and noisy common-image gathers (Zhang et al., 2010). Even when the velocity model is correct, the reflection events in shot-domain image gathers are very noisy and semblance is challenging to evaluate. Previously proposed techniques in the shot-domain consider all shots in the survey, thus exploiting the power of stacking to
attenuate the effects of noise and artifacts in the common-image gathers (Al-Yahya, 1989; Chavent and Jacewitz, 1995; de Vries and Berkhout, 1984; Xie and Yang, 2008; Yilmaz and Chambers, 1984).

We propose an objective function that evaluates the degree of semblance between images through local correlations in the image space and does not require to pick moveout or evaluate focusing in common-image gathers (CIGs). We use the morphologic relationship between images from nearby experiments to define an objective function that measures shifts in the image space (Perrone and Sava, 2012c). The methodology described in this work takes advantage of the local coherency of the migrated reflectors in the image domain to overcome the limitations of shot-domain CIGs. We compute the gradient of the objective function with the adjoint-state method (Plessix, 2006). Our approach does not require to store partial information about common-image gathers and avoids the need to pick moveout on gathers, and allows us to include all points illuminated by the seismic experiments in the velocity model building.

3.3 Theory

We define a measure of velocity error, \(r(x) \), where \(x = (z, x) \), in the image domain using penalized local correlation that measure the apparent shifts between single shots migrated images. We define the objective function of the optimization problem as the energy (\(l_2 \) norm) of \(r(x) \). Other norms (\(l_1 \), Huber norm, hybrid, etc.) can be used to promote sparsity and gain robustness against non-Gaussian noise in the data (Brossier et al., 2010). We use adjoint-state calculations to compute the gradient of the objective function.

3.3.1 Image Correlation Objective Function

There are at least two options for measuring similarity between two images. We can compute the point-wise difference function is

\[
r(x) = R_{i+1}(x) - R_i(x),
\]

(3.1)
where \(R_i(x) \) and \(R_{i+1}(x) \) are the migrated images for \(i \)th and \((i + 1)\)th shot, respectively. The two shots are assumed to be close and to image the same area in the subsurface. Plessix (2006) and Symes (1993) use the energy of the image difference as a regularization term for full-waveform inversion and not as a stand-alone objective function. Notice that if the velocity model used in migration is severely inaccurate, we can have cycle skipping in the image space or, in other words, the difference between the two images can produce two events if the position of the same reflector in the two images changes more than a quarter of a wavelength. This problem is analogous to what happens in full-waveform inversion in the data space.

An alternative solution is to restate the semblance principle as follows: if the velocity model is correct, two images from nearby experiments construct the final image along the direction of the reflectors (Perrone and Sava, 2012c). This is equivalent to the standard assumption that, if the model is correct, the prestack image-cube is invariant with respect to the shot position, i.e., no moveout in the shot-domain common-image gathers (Xie and Yang, 2008).

The structural dip is an attribute that is commonly extracted in seismic processing (Fomel, 2002; van Vliet and Verbeek, 1995). The similarity of two images perpendicular to the structural dip can be measured by means of penalized local correlations (Perrone and Sava, 2012c). We illustrate this idea on a simple model with a single horizontal density interface; the correct velocity model is constant and equal to 2.0 km/s. Figure 3.1 shows the dip and apparent displacement vector field (solid and dashed arrows, respectively) at particular spatial locations. Observe that the two vectors are orthogonal when the velocity model is correct.

The computation of the displacement field requires a highly nonlinear procedure, which extracts the \textit{maximum} of the local correlations at every image point (Hale et al., 2008). We reformulate the problem of evaluating the orthogonality between dip and displacement using local correlations between images \(R_i(x) \) and \(R_{i+1}(x) \) (Hale, 2006).
Figure 3.1: Relationship between the dip field and the apparent displacement: dip (solid) and displacement (dashed) vector fields for different values of slowness error for a single horizontal reflectors: (a) $\frac{\Delta m}{m} = 10\%$, $\frac{\Delta m}{m} = 0$, and (c) $\frac{\Delta m}{m} = 10\%$. The correct slowness value is 0.5 s/km.
penalized along the dip direction. The 2D vector $\mathbf{\lambda} = (\lambda_z, \lambda_x)$ denotes the correlation lag in the image space and the index i scans the shot position. The range of $\mathbf{\lambda}$ is chosen according to the wavelength of the signal. As a rule of thumb the size of the local window is approximately equal to the maximum wavelength of the signal. Local Gaussian windows $w(\mathbf{x} - \boldsymbol{\xi}) = \exp \left(-\frac{1}{2} \left(\frac{z-\xi_z}{\sigma_z} + \frac{x-\xi_x}{\sigma_x} \right) \right)$ centered about the image points \mathbf{x} weight the input images and allow computation of local crosscorrelations. $\boldsymbol{\xi} = (\xi_z, \xi_x)$ represents the dummy variable of integration in the correlation and it is defined in the same space as \mathbf{x}. If the velocity model is correct, the maximum of the correlation lies along the reflector slope (Figure 3.1(b)); otherwise, we observe a deviation that represents the relative shift of one image with respect to the other (Figure 3.1(a) and Figure 3.1(c)). To measure the shift between the two images, we consider the penalty operator

$$P(\mathbf{x}, \mathbf{\lambda}) = \mathbf{\lambda} \cdot \mathbf{\nu}(\mathbf{x}),$$

where $\mathbf{\lambda}$ is the correlation lag vector and the dip vector $\mathbf{\nu}(\mathbf{x})$ is the normal to the reflector at \mathbf{x}. The dip is computed from either one of the images $R_i(\mathbf{x})$ or $R_{i+1}(\mathbf{x})$; we used always the first image of the pair of shots considered in the correlation. The penalty operator $P(\mathbf{x}, \mathbf{\lambda})$ is a linear function in the dip direction (normal to the reflector) and the isopenalty lines are parallel to the reflector. The penalty operator is identically zero along the reflector.

Figure 3.2 shows the local correlations, penalty operators, and penalized local correlations for a particular location on the reflector in the three cases in Figure 3.1. The rows of Figure 3.2 refer to different models (from top to bottom: a too high, the correct, and a too low velocity model). The point on the image has lateral position $x = 3.5$ km and vertical that depends on the imaged reflector. Figure 3.2(a), Figure 3.2(d), and Figure 3.2(g) show the local correlations computed from two nearby shots; observe the shift in the peak of the local correlation and the orientation of the correlation panels. Figure 3.2(b), Figure 3.2(e), and Figure 3.2(h) show the penalty operators that we use to highlight the inconsistency between
Figure 3.2: Measure of the relative displacement between two images using penalized local correlations. We consider 2 images from nearby experiments of the reflector in Figure 3.1; each row (from top to bottom) represents a different model: too high, correct, and too low; the columns show (from left to right) the local correlation panel, the penalty operator used, and the penalized local correlation. For each model, we pick a point on the reflector with lateral coordinate $x = 3.5$ km. The vertical coordinate changes as a function of model parameters because the depth of the reflector changes. Observe the asymmetry of the penalized local correlations for the wrong models: the mean value (i.e., the stack over the correlation lags) of the penalized correlations gives us a measure of the relative shift between two images.
the dip measured on the image and the local correlations. The orientation of the penalty operators does indeed depend on the measured dip. We applied a Gaussian taper to the penalty operator in order to have a smooth transition to zero along the sides of the penalty operator panel and thus remove possible artifacts due to abrupt truncations. Figure 3.2(c), Figure 3.2(f), and Figure 3.2(i) show the penalized correlations. The apparent shift is now clear as a sign unbalance in the panels. When the velocity model is correct, the penalized correlation is an odd function (i.e., zero mean value) (Figure 3.2(f)); on the other hand, the panels lose their symmetry when the model is incorrect (Figure 3.2(c) and Figure 3.2(i)). The sign of the mean value of the penalized panels measures the apparent shift between the two images.

We define the velocity error measure as the average value of the local correlations $c_i(x, \lambda)$ penalized by the penalty operator $P(x, \lambda)$:

$$r_i(x) = \int P(x, \lambda) c_i(x, \lambda) d\lambda.$$ \hspace{1cm} (3.4)

This quantity measures the relative shift of one image with respect to the other directly in the image space and can be used for velocity analysis.

The shifts $r(x)$ in equation 3.4 are computed from the migrated images $R_i(x)$ and $R_{i+1}(x)$. The dependency on the source and receiver wavefields, and then the velocity model, is hidden in the imaging condition we use to construct the migrated image. An image of the subsurface $R(x)$ is conventionally computed as the zero-lag time correlation of the source and receiver wavefields (Claerbout, 1985):

$$R(x) = \int_T u_s(x, t) u_r(x, t) d\tau,$$ \hspace{1cm} (3.5)

where T is the recording time interval in the data.

We define the objective function

$$J(m) = \frac{1}{2} \sum_i \left\| \int P(x, \lambda) c_i(x, \lambda) d\lambda \right\|_x^2,$$ \hspace{1cm} (3.6)
where m represents the model parameters. Figure 3.3 shows the values of the objective function for different constant perturbations of the model used for the simple example shown in Figure 3.1. The objective function is smooth and convex in the range of errors considered.

![Graph showing the objective function for different errors in the slowness model.](image)

Figure 3.3: Values of the objective function for different errors in the slowness model. We consider constant perturbations ranging from -10% to 10% of the exact value (0.5 s/km).

3.3.2 Computation of the Gradient with the Adjoint-State Method

Because of the dimensionality of the model, the optimization problem is addressed using a local gradient-based method (steepest descent, conjugate gradient, etc.) (Vogel, 2002). The computation of the derivative of the state variables with respect to the model parameters (Frechét derivatives) is not practical (or even possible) because of the large number of dimensions of the model space. The adjoint-state method (Lions, 1972; Plessix, 2006) is an efficient algorithm that computes the gradient of an objective function, which depends on some variables that describe the state of the physical system under analysis (state variables), without computing the Frechét derivatives of these variables with respect to the model parameters.

The adjoint-state method consists of four steps: the computation of the state variables, the computation of the adjoint sources, the computation of the adjoint-state variables, and finally the computation of the gradient of the objective function. The first and third step (the evaluation of the state and adjoint-state variables) require the solution of the wave-equation...
that governs the physics of the problem. The adjoint-state method is computationally efficient because only two wavefield simulations are required at each iteration for computing the gradient of the objective function instead of a simulation for each parameter in the model. The Frechét derivatives of the state variables with respect to the model parameters are extremely big objects: they are defined in the space given by the cartesian product between the space of the state variables and the space of the model. They are not practical to compute and impossible to store in memory for realistic case scenarios in exploration geophysics. Nonetheless, they describe the sensitivity of each state variable to changes in each model parameter and are a powerful tool for resolution analysis.

In the following, we refer to the generic state variable using the letter u, the adjoint sources are indicated as g, and the adjoint-state variables are designated by the letter a. For wavefield tomography, there are two adjoint sources per experiment i: the source wavefield $u_{s,i}(\mathbf{x}, t)$ and receiver wavefield $u_{r,i}(\mathbf{x}, t)$, where i represents the shot index.

The state variables u are obtained from the solution to the forward problem

$$\mathcal{L}(m) u = f,$$

(3.7)

where f is the the source term vector, $\mathcal{L}(m)$ is the forward modeling operator, and m indicates the model parameters. \mathcal{L} can be a one-way or two-way wave operator; thus we can use either downward continuation (Gazdag and Sguazzero, 1984; Stoffa et al., 1990; Stolt, 1978) or reverse-time migration (Baysal et al., 1983; McMechan, 1983) in the wavefield tomography procedure. Here, we consider a two-way wave operator (d’Alambert or Helmholtz), and m represents the squared slowness. As shown in the following, the choice of squared slowness is convenient because it simplifies the final calculation of the gradient and allows us to obtain an expression that is independent on the model parameters at the current iteration.

The adjoint sources g are the partial derivatives of the objective function with respect to the state variables:

$$g = \frac{\partial J}{\partial u}.$$

(3.8)
The actual expression of the adjoint sources depends on the objective function. The particular design of the objective function impacts the adjoint sources and characterizes the particular wavefield tomography strategy proposed. In the following sections, we derive the expressions for the adjoint sources for an objective function based on local image correlations (equation 3.6).

We solve the adjoint problem and compute the adjoint variables a using the adjoint sources g as the force term:

$$\mathcal{L}^* (m) a = g,$$

where $\mathcal{L}^* (m)$ is the operator adjoint to $\mathcal{L} (m)$. Finally, the gradient is given by the inner product

$$\frac{\partial J}{\partial m} = -\langle a, \frac{\partial \mathcal{L}}{\partial m} \rangle.$$ \hfill (3.10)

For example, for the Helmholtz operator parametrized in terms of slowness squared, $\mathcal{L} = -\nabla^2 - m\omega^2$, the partial derivative $\frac{\partial \mathcal{L}}{\partial m}$ returns a simple scaling factor $-\omega^2$, and the inner product $\langle a, \frac{\partial \mathcal{L}}{\partial m} \rangle = -\omega^2 \langle a, u \rangle$ can also be seen as the scaled zero-lag correlation of u and a, similar to the procedure employed in conventional FWI.

3.3.3 Adjoint Sources

As described in the previous section, the adjoint sources $g = \frac{\partial J}{\partial u}$ are the derivatives of the objective function with respect to the state variables. In our objective function, we consider the dip field a slowly varying function of state variables and neglect the derivative of the penalty operator with respect to u. The details of the derivation of the expressions for the adjoint sources are in appendix A; here, we report the final result:

$$g_{s,i} = u_{r,i} (\eta, t) \left[r_{i-1} \int P (x, \lambda) w \left(x - \eta + \frac{\lambda}{2} \right) R_{i-1} (\eta - \lambda) \ d\lambda
+ r_{i} \int P (x, \lambda) w \left(x - \eta - \frac{\lambda}{2} \right) R_{i+1} (\eta + \lambda) \ d\lambda \right],$$ \hfill (3.11)
and

\[g_{r,i} = u_{s,i}(\eta, t) \left[r_{i-1} \int \mathcal{P}(x, \lambda) w \left(x - \eta + \frac{\lambda}{2} \right) R_{i-1}(\eta - \lambda) \, d\lambda
+ \, r_{i} \int \mathcal{P}(x, \lambda) w \left(x - \eta - \frac{\lambda}{2} \right) R_{i+1}(\eta + \lambda) \, d\lambda \right], \]

(3.12)

where \(g_{s,i} = g_{s,i}(x, \eta, t) \) and \(g_{r,i} = g_{r,i}(x, \eta, t) \) indicate the adjoint sources for the source and receiver wavefield of the \(i \)th shot, respectively, and \(r_{i} = r_{i}(x) \) is defined as in equation 3.4.

Notice that the adjoint sources depend on 3 variables \((x, \eta, t)\). The vector \(x \) represents the physical space, where model and image are defined; the variable \(t \) identifies the time axis; \(\eta \) is an auxiliary vector defined in the physical space that spans the local window around every image point. The adjoint source is obtained by spreading the value of the shift at each point in a window around the image point and by weighting it by the integral over \(\lambda \), which represents a local convolution of the image and the penalty operator. The value of \(r(x) \) in equation 3.4 measures the relative displacement of one image with respect to the other; the adjoint source thus estimates the curvature of the moveout in the shot-domain common-image gathers at each image point and scales the background wavefields by this value.

In 3D, Equations 3.11 and 3.12 remain valid but all the quantities involved are defined in a 3D space. The main difference between the two- and three-dimensional case is the computation of the \(r(x) \) and the ordering of the shots. In 2D there exists a clear ordering (along the line) for the seismic experiments, whereas in 3D every shot can have a number of neighboring experiments.

The dependence of the penalty operator \(\mathcal{P}(x, \lambda) \) on the state variables \(u \) passes through the definition of the dip vector \(\nu(x) \), which is normal to the reflectors at every point in the image. The dip field defines the wavefront set of the function that represents the reflection events in the image (Chang et al., 1987); the link between the image (and the wavefields) and the dip field can be written exploiting the concept of gradient-squared tensor (van Vliet...
and Verbeek, 1995): the dip vector is the eigenvector associated with the largest eigenvalues. There is no simple linear relationship between the dip vector and the wavefields, i.e. the state variables. Neglecting this term in the computation of the adjoint sources may introduce an error of the same order of magnitude of the term considered. A thorough study of $\partial P/\partial u$ and its impact on the computation of both the adjoint sources and the gradient of the objective function is subject for future research.

3.3.4 Flat Reflector in a Constant Velocity Medium

Figure 3.1 shows the migrated images of a horizontal interface obtained from a shot located at $x = 4$ km. The data are computed in a constant 2.0 km/s velocity medium using a two-way finite-difference scheme. We migrate the data with three different slowness models and perform sensitivity analysis for our methodology. Observe that with a single shot, the image of a horizontal reflector curves up or down depending on the sign of the velocity error. The relative displacement between different images is measured by the value of $r(x)$ defined in equation 3.4. Figure 3.4 shows the shifts calculated using two images from adjacent shots. Observe the change in sign across the zero-offset reflection point and how the sign changes with the velocity error. Note also the effect of limited aperture on the shift estimation: the abrupt change in the estimated shift at the edges of the reflector is due to uneven illumination from the three experiments.

In Figure 3.5, we show the gradient computed from the correlation objective function. We consider three shots to compute $r(x)$ and use only the wavefields of the central experiment to compute the gradient. We also focus our attention in the portion of the reflector that is illuminated by all three shots in order to avoid artifacts due to the erroneous shift estimation at the edge of the reflector. The gradient of the objective function represents the direction of maximum increase of the function itself and its sign depends on the chosen parametrization. We compute the gradient with respect to slowness squared; this means that a positive gradient points toward slower models whereas a negative gradient points toward faster models.
Figure 3.4: For the three cases in Figure 3.1, we compute the shifts $r(x)$ according to equation 3.4. The sign of the shifts indicates the relative displacement of one image with respect to the other.
Figure 3.5: Gradient of the correlation objective function for a slowness model that is too low (a), correct (b), and too high (c). The slowness squared error is constant everywhere and equal to 10% of the background. The distance between the two shots is 60 m. We consider three shots and computed the gradient using the wavefields of the central experiment.
3.4 Examples

We show the results of our inversion methodology using two datasets. First, we run an inversion test on a simple synthetic heterogeneous model with different layers using 40 shots evenly spaced 200 m apart and receivers at every grid point on the surface. We use shot-domain common-image gathers to assess the quality of the result and to show that our methodology is able to obtain a set of images that is invariant with respect to the experiment position. Second, we apply our methodology to a real 2D marine dataset. We invert 200 shot-gathers acquired with a streamer cable. Each shot includes 99 receivers. The shot and receiver sampling is 12.5 meters and the maximum offset is 1.225 km.

3.4.1 Synthetic Laterally Heterogeneous Model

![Velocity model used to generate the full-acoustic data. Absorbing boundary conditions have been applied at all sides of the model. The lighter shades of grey indicate faster layers. The top layer has velocity of water (1.5 km/s).](image)

We use the synthetic heterogeneous model in Figure 3.6 to test our inversion algorithm. The model has a few layers with different dips and a syncline structure with an inversion in the otherwise decreasing slowness trend. We generate full-acoustic (i.e., non-Born) data with absorbing boundary conditions (no free-surface multiples) and random Gaussian noise with...
Figure 3.7: Initial velocity model (a), associated migrated image (b), and shot-domain common-image gathers. The reflectors are severely defocused and mispositioned. Observe the curvature of the common-image gathers that shows how different experiments image the reflectors at different depths.
a signal-to-noise ratio of 10. We model 40 shots evenly spaced 200 m apart with receivers at every grid point on the surface. We heavily smooth the initial model in Figure 3.6 and obtain the initial velocity model for migration (Figure 3.7(a)). The source signal is a Ricker wavelet with peak frequency 15 Hz. The modelled data are then bandpass filtered in order to limit the maximum frequency to 25 Hz. Figure 3.7(b) shows the stack of the migrated images obtained from the initial model; if we compare the correct model in Figure 3.6 and the migrated image we can observe the mispositioning of the reflecting interfaces. We construct 10 shot-domain common image gathers to assess the overall focusing of the image. These gathers are simply the juxtaposition of the migrated images at fixed lateral positions (from $x = 0$ km to $x = 9$ km every 1 km). Figure 3.7(c) shows such gathers for the initial model: the position of the reflectors changes as a function of experiment (the images do not satisfy the semblance principle) and the model is thus not accurate. After 13 waveform tomography steps, we recover the model in Figure 3.8(a). The model is still quite smooth, but the migrated image shows a noticeable improvement in the position of the reflectors (Figure 3.8(b)), and the shot-domain common-image gathers in Figure 3.8(c) clearly indicate better focusing. Moreover, the imaged reflectivity is now consistent with the actual slowness contrasts in the exact model; observe the change in polarity of the reflector at $z = 3$ km between the initial and final image, that corresponds to a decrease in velocity. We impose conformity between the model update and the layers in the image by means of a structure-oriented smoothing operator, which steers the gradient of the objective function by smoothing along the reflector slope. We used the complete stacked image to guide the smoothing of the gradient. This approach is conceptually similar to the sparse inversion proposed by Ma et al. (2010). Figure 3.9 shows the evolution of the objective function with iterations. Notice the monotonic decrease in the value of the residual and the flattening when the algorithm converges. The algorithm stops when the objective function changes less than 1% of the initial value over three consecutive iterations. The inversion shows a rapid convergence in the very first iterations of steepest-descent: the structure-oriented smoothing forces the
gradient to conform to the geometry of the layers and speeds up convergence to an acceptable model.

3.4.2 Real Data

We test our inversion algorithm on a real dataset supplied by eni E&P. The data consists of a single 2D line, the total number of shots is 3661, the streamer has 99 receivers, and the maximum offset is 1.225 km. The data have been regularized and demultiplied. Source and receiver spacing is equal to 12.5 m. We show a subset of the entire dataset; we downsample the shots 2 : 1 and analyze 200 shots. The first shot location is $x = 11.25$ km. The frequency content of the data ranges between 3 and 75 Hz.

We fix the water velocity to 1.51 km/s and start inversion from a slowness vertical gradient (Figure 3.10(a)). The migrated image using the initial velocity model is shown in Figure 3.10(b).

Observe the partial overlap between different events because of the moveout in the image-gathers. The interference between moveout curves that are relative to different reflection events would cause a naive MVA approach, as the total stack power maximization, to cycle skip and not converge.

The inversion converges after 90 iterations of steepest descent and returns the model in Figure 3.11(a); the associated migrated image is shown in Figure 3.10(b). The migrated images reconstructed with the initial and final model are displayed using the same scale.

In order to better understand the error in the velocity model, we show the shot-domain CIGs at 4 different locations (Figure 3.12(a)-Figure 3.12(d)). The CIGs are extracted every kilometer from $x = 12$ km. The strong moveout function of the shot position indicates error in the velocity model. Observe the increased strength of the reflectors after inversion. The common-image gathers in Figure 3.12(e)-Figure 3.12(h) show that the single migrated images locate reflectors at consistent depths (in agreement with the semblance principle) and thus the velocity model is kinematically accurate.
Figure 3.8: Velocity model after 15 iterations of waveform inversion (a), migrated image (b), and shot-domain common-image gathers (c). Observe the improved focusing and positioning of the reflectors. The common-image gathers show that the images are invariant in the shot direction and the model is thus kinematically correct. Observe the profile of the various layers in the reconstructed model.
Figure 3.9: Evolution of the objective function with iterations. Observe the sharp decrease of the objective function and the rapid convergence to a kinematically accurate model.

We compute angle domain common-image gathers (ADCIGs) associated with the initial and final model using the method developed by Sava and Fomel (2003). The gathers are computed for opening angles between −25 and 0 degrees. Figure 3.13(a) shows the ADCIGs for the initial model: the strong moveout indicates errors in the velocity model. Figure 3.13(b) shows the ADCIGs after inversion. The events are flatter and indicate a kinematically more accurate model.

The convergence of the inversion algorithm is described by the evolution of the objective function (Figure 3.14). No model regularization is implemented in the inversion. The gradient is smoothed along the reflectors using a structural-oriented smoothing. The width of the smoothing filters is 300 m in the direction perpendicular to the reflectors and 100 m in the direction across. Notice that because of the greater number of reflection events and the irregularity of the interfaces, much more iterations are needed to reach convergence with respect to the previous synthetic example.

3.5 Discussion

A complete image of the subsurface is the superposition of partial images from individual experiments. The semblance principle (Al-Yahya, 1989) is a common criterion for assessing
Figure 3.10: Initial migration model and migrated image.
Figure 3.11: Final migration model and migrated image. The sections in Figure 3.10(b) and Figure 3.11(b) are displayed on the same color scale. Observe the increased amplitude of the reflectors due to better focusing.
Figure 3.12: Shot-domain CIGs computed for the incorrect model at (a) $x = 12$ km, (b) $x = 13$ km, (c) $x = 14$ km, and (d) $x = 15$ km, and gathers computed after inversion at the same locations ((e), (f), (g), and (h)). The gathers are flattened by the inversion procedure, i.e. the reflectors are invariant with respect to shot index.
Figure 3.13: Angle-domain common-image gathers (ADCIGs) computed at several lateral positions (a) before, and (b) after inversion. After inversion the gathers are flatter, which indicates a more kinematically accurate migration model.
the correctness of the velocity model used for imaging the survey: when the velocity model is correct, all shots locate reflectors at the same position, i.e., the image is invariant along the experiment axis. Several shots are needed to evaluate a velocity error at a single point in space.

We can evaluate the invariance along the experiment axis by computing the energy of the first derivative in that dimension. The first derivative acts as a penalty operator by highlighting and enhancing deviations from the horizontal direction along the shot axis. The stack of the energy of the first derivative is the differential semblance operator applied directly in the shot domain (Plessix, 2006; Symes, 1991).

Here, we explore an alternative statement of the semblance principle: when the velocity model is correct, images from different shots constructively interfere and build up the image perpendicular to the structural dip or parallel to the reflector slope, at every point in the image space. The structural dip is a commonly extracted attribute and can be linked to the image itself by means of the gradient-squared tensors (van Vliet and Verbeek, 1995). Unfortunately, the relationship between wavefields and the dip field is nonlinear: the dip vector represents the eigenvector associated with the largest eigenvalue of the gradient-squared tensor. Including the dip variation with respect to model perturbation in the inversion proce-
dure is not straightforward, and further research is needed to develop an efficient method to exploit this information for velocity analysis purposes. Nonetheless, we are able to measure the semblance of two images through appropriately penalized local correlations of pairs of images. If the velocity model is correct, the maximum of the local correlation is along the reflector at every point in the image; if the model is incorrect, the maximum deviates from the reflector slope. The penalty operator is space-dependent and annihilates the correlation panels orthogonal to the reflector dip. Because of the dependency on the velocity model, we measure the dip field at each tomographic iteration; the estimation can be carried out efficiently using gradient-squared tensors (van Vliet and Verbeek, 1995).

The correlation objective function is superior to the image difference in many respects. First, the difference between two images depends on image amplitudes that change as a function of the shot position and cannot be matched point-wise as in the standard implementation of full-waveform inversion in the data space. The amplitude patterns affect the residual in the image space and effectively contribute to the adjoint source calculation, even if the velocity model is correct and the gradient of the objective function is zero (Mulder and Kroode, 2002). By penalizing local correlations, we reduce the dependence of the objective function on amplitudes, thus increasing the robustness and reducing the systematic bias caused by the amplitude differences between the images. A downside of the correlation operator is the loss of spatial resolution. Correlation in the spatial domain is equivalent to multiplication in the dual frequency/wavenumber domain; for signals with both finite spatial support and bandwidth, the multiplication of the spectra decreases the bandwidth, i.e., increases the width of the signal in the spatial domain. To increase the resolution and accuracy of the evaluation of the relative shifts between images, deconvolution is a viable improvement over correlation. If we assume that two images from nearby experiments are linked by a simple spatial shift, a local deconvolution approach would ideally produce a bandlimited spatial delta function indicating the direction of apparent displacement. On the other hand, since deconvolution amplifies the noise in the data (because of the division in
the frequency domain), additional care is necessary to stabilize the result.

A thorough study of the effect of the shot distance on the computed gradient would be beneficial in relation to phenomena such as cycle skipping, which hinders many velocity analysis strategies (especially but not exclusively in the data domain). The image domain is intrinsically less prone to cycle skipping problems; nevertheless the question remains about what happens when two images illuminate rather different areas of the subsurface and the local correlations cannot be used to estimate a reliable and meaningful shift between the two images. From our current knowledge and understanding, the shots must be close enough to provide comparable images of the subsurface and avoid cycle skipping in the image domain. The sampling of the shot position and the illumination pattern in the subsurface can also create a scenario in which the two images do not overlap in certain local windows.

Our method is based on locally coherent events, such as locally smooth reflectors. Conflicting dips, fault planes, and areas where the definition of a reflection plane is ambiguous represent open problems because in these areas we cannot define penalty operators. In this respect, plane-wave migration may represent a valid solution because of the implicit spatial filtering of the image: each plane-wave reconstructs a particular subset of the dips in the model, thus reducing the ambiguity in defining the penalty operators. Alternatively, for complex areas with conflicting dips and complicated geologic features (where there is no clear definition of the dip field), a more sophisticated design of the penalty operator may be key to obtaining meaningful residuals and a reliable gradient. The eigenvalues and eigenvectors of the gradient-squared tensors (van Vliet and Verbeek, 1995) can be used to define ellipses that, in turn, may offer a structure-oriented criterion for the definition of the penalty operators.

In contrast with other techniques in the image space (Biondi and Symes, 2004; Bishop et al., 1985; Lambaré et al., 2004; Xie and Yang, 2008; Yang and Sava, 2010, 2011b), our approach does not need to explicitly construct and analyse image gathers (or extended images). A further cost-saving factor is given by the selection of points on the imaged
Reflectors (Yang and Sava, 2010) and away from complex areas (pinch-outs or areas with conflicting dips). The computation of the local correlation is carried out at every image point using the efficient method developed by Hale (2006).

The ability to extract velocity information from pairs of experiments adds a new degree of freedom for implementing a model update procedure. Here, we indicate two possible strategies. We can simultaneously include all the shots in the survey in the definition of the objective function or we can proceed iteratively and update the velocity model using the information obtained from a single pair of experiments before moving to the next pair. Nearby shots probe similar portions of the model and provide comparable images; we can use the information extracted from an initial group to update the model used for imaging a second group of experiments. Since in any migration velocity analysis scheme we have to image the entire survey at least once, the iterative update of the model over shots becomes cost-effective if we actually reduce the number of global migrations of the entire dataset.

In 2D, we can easily define an order for the experiments; in the general 3D scenario, we have an extra degree of freedom. The definition of the objective function remains the same but a given shot can have more than 2 neighboring experiments (the acquisition is defined on a two-dimensional grid). We can generalize the concept of correlation using the semblance functional (Taner and Koehler, 1969), which is nonlinear in the input signals and makes the computation of the gradient more involved. We can also separately analyze each pair of experiments given a reference model. Further research and numerical tests are needed to assess efficiency and robustness of one strategy over the other.

3.6 Conclusions

We develop an objective function for migration velocity analysis in the shot-image domain. Our methodology is based on local image correlations and a reformulation of the semblance principle involving only small groups of migrated images. The optimization criterion is the minimization of the apparent shift between the migrated images and naturally leads to a differential semblance optimization problem, which is iteratively solved using a
gradient-based method. The linearity of the operators in the objective function makes the computation of the gradient practical using the adjoint-state method. Our approach is full-wave because we do not rely on the linearization of the wave extrapolation procedure with respect to the model parameters to construct a migration velocity analysis operator. We iteratively solve a nonlinear problem with a gradient-based algorithm and the simulation of the wavefields is fully nonlinear with respect to the model parameters.

The structural features in the migrated image and the variation of these features as function of experiment supply valuable information about the model parameters. Here, we show that it is possible, without constructing common-image gathers, to extract information about the model from a very limited number of experiments using a warping relationship between migrated images. We use a few synthetic tests to describe the algorithm and the behavior of the inversion procedure; we inverted a real 2D marine dataset to demonstrate the effectiveness of our method.

3.7 Acknowledgments

We would like to thank eni E&P for permission to publish this work and Nicola Bienati for the valuable conversations on tomography and inversion. The reproducible numerical examples in this paper use the Madagascar open-source software package freely available from http://www.reproducibility.org. This research was supported in part by the Golden Energy Computing Organization at the Colorado School of Mines using resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratory. FP would also like to thank Thomas Cullison for developing the automatic picking algorithm used in this research, Jeff Godwin for developing the interfaces for the cluster, and Prof. Luis Tenorio for his help and mathematical support.
CHAPTER 4
SHOT-DOMAIN 4D TIME-LAPSE SEISMIC VELOCITY ANALYSIS USING APPARENT IMAGE DISPLACEMENTS

A paper to be submitted to *Geophysics*
F. Perrone\(^1\) and P. Sava\(^1\)

4.1 Summary

Hydrocarbon production modifies the stress conditions in the subsurface and changes the model parameters previously estimated from the prospect. The capability to remotely monitor the changes in the reservoir using seismic data has strategic importance since it allows us to infer fluid movement and evolution of stress conditions, which are key factors to enhance recovery and reduce uncertainty and risk during production. A model of the subsurface parameters is necessary to reconstruct the seismic waves traveling through the medium and thus correctly image reflectors in the subsurface. Geomechanical changes in the subsurface can be measured by changes of seismic images obtained from the recorded data of multiple time-lapse surveys. In this work, we estimate changes of subsurface model parameters using the apparent shifts between migrated images obtained by 4D time-lapse seismic surveys. We assume that the shift between the time-lapse images of the same reflectors is completely due to the perturbation of the model parameters, and we use the image from the first (baseline) survey as a reference to estimate this perturbation. The apparent shifts are measured using penalized local correlations in the image domain, which take advantage of the local coherency of the reflectors in the image domain and do not explicitly rely on semblance in common-image gathers. The energy of the estimated displacements defines the objective function of our optimization scheme. We implement a wavefield tomography algorithm using the adjoint-state method for computing the gradient of the objective function.

\(^1\)Center for Wave Phenomena, Colorado School of Mines
Since relatively small amounts of data are needed, our method can be used to invert for model changes at short time intervals, thus increasing the time-resolution of 4D monitoring.

4.2 Introduction

Production of a hydrocarbon reservoir changes the physical parameters of the subsurface. Oil and/or gas extraction modifies the bulk modulus of the rocks and affects the geomechanics of the area. Stress changes induced by hydrocarbon production represent a key issue for constructing a geomechanical model of the reservoir. Monitoring these changes using remote sensing techniques is crucial for the oil and gas industry to design wells, predict recovery, and mitigate hazards and risk (Lumley, 2001).

Seismic waves are sensitive to the elastic properties of the subsurface. The propagation velocities of the elastic waves are directly related to the stress state in the subsurface (Aki and Richards, 2002). By repeated seismic surveys over a reservoir at the various production stages, we can track changes in the propagation velocity in the subsurface and reconstruct the perturbation with respect to an initial model. This analysis exploits the sensitivity of the seismic waves to the elastic parameters of the subsurface. Inversion maps the changes in the recorded waveforms into a perturbation of the velocity model, which can then be related to stresses in the subsurface for geomechanical applications.

Time-lapse analysis is usually performed in the time domain (Hatchell and Bourne, 2005) and assumes small perturbations with respect to the background (baseline) model. Great care must be taken to match the baseline and monitor survey, a process called cross-equalization (Rickett and Lumley, 2001), in order to remove from the data all the differences that are not related to changes in the model parameters (e.g., differences in acquisition geometry). Similarly, time-lapse analysis can be done in the image domain, which is less sensitive to differences in the acquisition geometries and thus more robust against repeatability issues than the data domain. Shragge and Lumley (2012) propose a linearized inversion approach in the depth-domain based on the wave-equation migration velocity analysis algorithm developed by Sava and Biondi (2004). Shragge et al. (2012) apply the methodology developed by
Yang and Sava (2011a) to 4D seismic monitoring and uses the adjoint-state method (Fichtner et al., 2006), which removes the linearity assumptions. By operating directly in the depth domain without linearity assumptions, this inversion can handle strong errors in the velocity model.

Wave-equation migration velocity analysis (MVA) (Sava and Biondi, 2004) and image-domain waveform tomography (Yang and Sava, 2011a) require complete aperture to correctly construct the image perturbation that drives the tomographic procedure and to evaluate focusing in the subsurface, respectively. The requirements for the acquisition geometry can be relaxed using the approach proposed by Yang and Sava (2012); nonetheless, a large aperture is necessary for resolution purposes. We advocate the use of local image correlations (Hale, 2006) and dip-dependent penalty operators to measure the relative displacement between shot-migrated images and then use the inversion technique of Perrone and Sava (2012c) to evaluate a model update following production. Penalized local image correlations allow us to estimate the velocity model errors shot by shot. The image-domain approach is robust against repeatability issues, such as errors in the shot and receiver positions, and the adjoint-state method allows us to implement a nonlinear inversion procedure, which is effective for large and complex model updates.

4.3 Theory

Perrone and Sava (2012c) restate the semblance principle considering locally coherent events in the image domain: the velocity model is correct when the images from different neighboring experiments show conformal features, that is, when the dips of the reflectors in the two images are point-wise consistent. This criterium can be applied to migration velocity analysis using local image correlations to evaluate the relative movement of the two images with respect to their structural dips. We can use the same idea for 4D time-lapse seismic and compare the images obtained from the baseline and monitor survey. In this case, we measure shifts of the monitor image with respect to the baseline, which represents the reference. The shift is measured along the normal to the reflector (in the dip direction).
We set an optimization problem by defining the objective function (Perrone and Sava, 2012c)

\[J(m) = \frac{1}{2} \| \sum_{\lambda} P(x, \lambda) c(x, \lambda) \|_x^2, \]

where \(c(x, \lambda) = \int w(x - \xi) R_{\text{bsl}}(\xi - \frac{\lambda}{2}) R_{\text{mon}}(\xi + \frac{\lambda}{2}) d\xi \) is the local correlation of the baseline image \(R_{\text{bsl}}(x) \) and the monitor image \(R_{\text{mon}}(x) \), and \(P(x, \lambda) \) is a penalty operator that highlights features which are related to velocity errors. The correlations are computed in local seamlessly overlapping windows \(w(x) \), and the variable \(m(x) \) denotes the model (slowness squared, slowness, velocity, etc.). When the velocity model is correct, the two images are perfectly aligned and the residual \(\sum_{\lambda} P(x, \lambda) c(x, \lambda) \), a proxy for the relative displacement, is at minimum.

While we assume that the shifts between the migrated baseline and monitor survey are related to the errors in the velocity model, this is not necessarily true since changes in the stress conditions can cause compaction of the reservoir and lead to subsidence, that is physical movement of all the reflectors above the reservoir. Although subsidence up to 12 m due to hydrocarbon production has been observed and reported in the literature (for example, in the Ekofisk field in the North Sea), shifts in the subsurface are usually negligible compared to the wavelength of the seismic signal (typically these movements can be in the order of a meter between the top and bottom of the reservoir (Hatchell and Bourne, 2005)); it is thus safe to assume that the estimated shifts in the reflector positions are due to changes in the migration model and not to changes of the positions of the interfaces. This is especially true when monitor surveys are performed at relatively short time intervals.

We compute the gradient of the objective function in equation 4.1 using the adjoint-state method (Fichtner et al., 2006). The migrated images are defined as the zero-lag time-correlation of the source and receiver wavefield \(u_s(x, t) \) and \(u_r(x, t) \), which are extrapolated in a model \(m(x) \) of the subsurface. The wavefields are computed by solving the wave-equations.
\[\mathcal{L}(m) u_s = f_s, \quad \mathcal{L}(m) u_r = f_r, \quad (4.2) \]

where \(\mathcal{L}(m) = m \partial_{tt} - \nabla^2 \) is the d’Alambert operator, \(f_s(x_s, t) \) and \(f_r(x_r, t) \) are the source and the seismic reflected data, respectively, and \(x_s \) and \(x_r \) indicate the source and receiver positions. In this formulation, \(m(x) \) represents slowness squared and since \(\mathcal{L}(m) \) is linear in \(m \), this choice simplifies the expression of the gradient of the objective function (Fichtner et al., 2006). The gradient of the objective function is

\[\nabla_m J = \int (\ddot{u}_s a_s + \ddot{u}_r a_r) dt, \quad (4.3) \]

where the adjoint wavefields \(a_s(x, t) \) and \(a_r(x, t) \) are solutions to the wave-equations

\[\mathcal{L}^\dagger(m) a_s = g_s, \quad \mathcal{L}^\dagger(m) a_r = g_r. \quad (4.4) \]

\(\mathcal{L}^\dagger(m) \) is the adjoint of the d’Alambert operator, and the adjoint sources \(g_s(x, t) = \nabla_{u_s} J \) and \(g_r(x, t) = \nabla_{u_r} J \) are given by the Frechét derivatives of the objective function with respect to the background wavefields. The double dot indicates the second derivative with respect to time.

From the perspective of time-lapse analysis, the gradient \(\nabla_m J \) indicates which parts of the model must change in order to reduce the mismatch between the baseline and monitor migrated images. Through inversion, we can localize the areas in the model that experienced a perturbation in physical parameters and eventually relate that perturbation to geomechanical effects, such as stress changes induced by the reservoir production.

4.4 Synthetic Depletion Model

When a reservoir is produced, the depletion causes geomechanical effects both inside and outside the reservoir. Because of the drop in pore pressure, the reservoir rock compacts and the effective stress (and seismic velocity) increases; outside the reservoir the rock is strained and the seismic velocity decreases. This observed phenomenon can be analyzed using time-shifts (Hale et al., 2008; Hatchell and Bourne, 2005; Smith and Tsvankin, 2012) and describes the complex changes in subsurface stress conditions caused by oil and gas production.
In order to test our velocity estimation procedure, we use a geomechanical model used by Fuck et al. (2009) and Smith and Tsvankin (2012) to obtain the model parameters for a reservoir under depletion. The geomechanical model simulates the response of a single-compartment rectangular reservoir comprised of and embedded in homogeneous Berea sandstone (Figure 4.1). The depth of the reservoir is $z = 1.5$ km, the thickness is 0.1 km, and the width is 2.0 km. The parameters of wave propagation obtained from laboratory measurements are $V_p = 2300$ m/s, $V_p = 1456$, and $\rho = 2140$ kg/m3. The details of the geomechanical simulation can be found in Smith and Tsvankin (2012).

We generate data with acoustic finite-differences using density reflectors at various depths and with absorbing boundary conditions on each side of the model (Figure 4.2(a)).

The initial velocity model is homogenous and equal to 2.07 km/s velocity. The value is obtained by reducing the laboratory values for Berea sandstone by 10% to account for the difference between static and dynamic stiffnesses. Figure 4.2(b) shows a model of the reservoir undergoing a 20% depletion, that is the change in pore pressure is equal to 20% of the confining pressure Smith and Tsvankin (2012). Observe the complex pattern of the velocity anomaly outside the reservoir. The velocity model perturbation inside the reservoir is about +15% with respect to the baseline model. The sensitivity of our velocity error measure as a function of depletion of the reservoir is shown in Figure 4.3. As depletion increases the monitor image becomes more and more distorted and strong headwaves are generated, which represent an additional source of noise. As a consequence, the objective function loses sensitivity at elevated depletion percentages.

We place a single shot at $x = 1.5$ km at the surface and perform 3 inversion tests. The first experiment represents an “ideal” scenario in which we have a full (at the surface) repeatable survey. We invert the velocity anomaly and use it to study the sensitivity of our algorithm when the acquisition is limited, as a marine-streamer case, and when the acquisition is both limited and not perfectly repeatable, e.g., because of errors in source and receivers positioning.
Reservoir

\[P_{\text{eff}} = P_{\text{con}} - \alpha P_{\text{fluid}} \]

\[\Delta P_{\text{fluid}} = -\xi P_{\text{con}} \]

Figure 4.1: Reservoir geometry after Smith and Tsvankin (2012). Pore-pressure \((P_p = P_{\text{fluid}})\) reduction occurs only within the reservoir, resulting in an anisotropic velocity field due to the excess stress and strain. The reservoir is comprised of and embedded in homogeneous Berea sandstone \((V_P = 2300 \text{ ms}^{-1}, V_S = 1456 \text{ ms}^{-1}, \rho = 2140 \text{ kgm}^{-3})\). The Biot coefficient \((\alpha)\) for the reservoir is 0.85. Velocities in the model are reduced by 10\% from the laboratory values to account for the difference between static and dynamic stiffnesses in low-porosity rocks. The change in pore pressure \(\Delta P_{\text{fluid}}\) is expressed as a percentage \(\xi\) of the confining pressure \(P_{\text{con}}\).
Figure 4.2: (a) Density model used to simulate the reflecting interfaces. (b) Velocity model of the depleted reservoir. The original model is homogenous with 2.07 km/s velocity. Observe the characteristic shape of the anomaly with increasing velocity inside the reservoir (because of compaction) and decreasing velocity outside the reservoir (because of tensile strain).
Figure 4.3: Sensitivity of the penalized local correlation objective function to different depletions of the reservoir. Observe the lost of sensitivity when the reservoir is strongly depleted. For this sensitivity study, we use a full and perfectly repeatable acquisition.
4.4.1 Full-Aperture, Repeatable Survey

Figure 4.4 shows the data obtained for the baseline and the difference between the monitor and baseline survey. Because of the opposite sign of the velocity anomaly, the early arrivals (around 1.2 s) are delayed and the late waveforms (after 1.5 s) are advanced in time. The effect of the anomaly is clearly visible in Figure 4.4(b) in the change of polarity across the shallowest reflection events, which experience both the positive and negative velocity perturbation. Weak internal multiples are also better visible in Figure 4.4(b) in between the third and forth reflection events and after 2.5 s. The tapering of the data at the edges is important to reduce the artifacts in the migrated image.

The gradient of the objective function is smoothed using a triangular filter with radius 2 samples vertically and 5 samples horizontally. The model is updated using a steepest descent algorithm. We implement regularization through triangular smoothing. The smoothing procedure acts as regularization in the inversion by removing spurious high wavenumber side-lobes in the gradient. More sophisticated and structure oriented regularization approaches can be used for more complex subsurface scenarios.

The monitor data migrated with the baseline velocity model lead to the image in Figure 4.5(a). Observe the migration artifacts close to the source position and the weak residual smiles close to the edges of the aperture in the subsurface. After inversion, we obtain the image in Figure 4.5(b), where the top reflector has been pulled up and the central and deeper interfaces pushed down. Again, you can observe that at the edges of the aperture the migrated images is noisier.

Figure 4.6 shows the true perturbation and the result of our single-shot inversion after 60 tomographic iterations. Because of the limited angular coverage of the acquired data, the wavefields are not sensitive to the complete extent of the anomaly. Nonetheless, the imaged portion of the model allows us to constrain the size and location of the anomaly. Notice that the inversion is able to recover the weaker perturbation outside the reservoir of opposite sign with respect to the perturbation within the reservoir, and observe that we are also able to
Figure 4.4: (a) Baseline data and (b) difference between monitor data simulated in the depleted reservoir and baseline. The acquisition is perfectly repeatable, the source location is $x = 1.5$ km at the surface, and receivers are at every grid point at $z = 0$ km. The change in polarity for the shallowest events is due to the different sign of the velocity perturbation.
Figure 4.5: (a) Migrated monitor image obtained using the baseline model and (b) migrated monitor image after inversion with full receiver coverage at the surface. The central and deeper reflectors are moved downward, which the shallowest interface is pulled up. The migration artifacts are due to truncation of the acquisition and critical reflections (headwaves) from the anomaly in the depleted reservoir.
Figure 4.6: (a) Actual time-lapse model perturbation and (b) inverted perturbation after 60 iterations of wavefield tomography with full receiver coverage at the surface. Notice that we are able to correctly image the anomaly and also constrain its lateral extent at about $x = 2 \text{ km}$.
correctly image the left side of the anomaly thus correctly constraining its lateral extent.

Figure 4.7 shows the shifts between the baseline and monitor migrated images before and after inversion. Black indicated a downward shift whereas white indicate an upward shift. Before inversion the shallower and deeper reflectors are shifted in opposite direction because of the different sign of the anomaly inside and outside the reservoir (see Figure 4.6(a)). After inversion the reflectors are better aligned; inversion warps the monitor image into the baseline image and returns the velocity anomaly that corrects the shifts of the imaged interfaces. We can observe some spurious strong residual shifts at the edges of the illumination in the migrated domain, which are due to residual migration artifacts that contaminate the image. The migration artifacts are the principal source of noise in this example: observe the shifts that are measured close to the source position ($x = 1.0$ km), which are completely spurious because they are measured along migration smiles due to truncation at the edges of the acquisition. The fewer data close to the edges of the acquisition do not allow us to produce a clean image and thus to constrain the geometry of the reflectors. As a consequence, the gradient of the objective function and the model update are less reliable than in the central part of aperture (from $x = 1.0$ km to $x = 2.0$ km).

4.4.2 Limited-Aperture, Repeatable Survey

In order to model a more realistic marine acquisition, we simulate a single-side, marine streamer acquisition. Our experiment uses a single shot-gather with the source located at $x = 1.5$ km and with a streamer 3.2 km long. The length of the cable is about the same as the lateral extent of the reservoir. The streamer carries 200 evenly spaced receivers and the receiver spacing is 8 m. The acquisition is perfectly repeatable, i.e., the position of source and receiver is identical in the baseline and monitor survey.

Figure 4.8 shows the simulated data with limited aperture and the difference between the monitor and baseline dataset. By reducing the angular coverage, we reduce the lateral extent of the imaged reflectors, which affects the computed gradient of the objective function.
Figure 4.7: (a) Initial estimated shifts and (b) estimated shifts after 60 iterations of wavefield tomography. Black indicates positive (downward) shifts and white represents negative (upward) shifts. Inversion matches the baseline and monitor images and reduces the shifts between them. The strong residual after inversion at about $x = 2.7$ km for the shallowest reflectors is due to the conflicting orientation of the reflectors and migration artifacts in the image.
Figure 4.8: (a) Baseline data and (b) difference between monitor data simulated in the depleted reservoir and baseline. We reduced the receiver coverage to simulate a marine-streamer acquisition. Observe the polarity change of the shallowest reflection events in the differential dataset due to the sign change of the velocity anomaly.
Figure 4.9: (a) migrated monitor image obtained using the baseline model and (b) migrated monitor image after inversion with reduced receiver coverage. The central and deeper reflectors are moved downward, which the shallowest interface is pulled up. Observe the migration artifacts which represent the main source of noise for inversion. The limited acquisition mutes the close-to-critical reflections from the reservoir and reduces the migration artifacts in the migrated image.
The migrated images in Figure 4.9 show a smaller illumination due to the limited aperture of the data, but we can also observe fewer artifacts with respect to the previous, dull-aperture case. In both examples, the parameters for tapering the data are the same.

Figure 4.10 shows the actual and reconstructed anomaly. Notice that because we reduced the aperture of the data, we also reduced the subsurface aperture and the lateral extent of the imaged reflectors. The inverted anomaly spans a smaller area with respect to the previous case, but the overall quality of the inversion does not seem to be affected.

4.4.3 Limited-Aperture, Non-repeatable Survey

Especially in towed-streamers marine acquisition, an identical positioning of the receivers is impossible. We model the uncertainty on source and receivers positions by adding a Gaussian random perturbation to the coordinates of the shot and hydrophone positions of the previous example. The standard deviation of the perturbation is 8 m and equal to the discretization of the model.

The image domain is intrinsically less sensitive to perturbations in the acquisition geometry than the data domain because the data are smoothed by the migration operator when they are mapped in the subsurface model. Moreover, since we are not measuring direct differences between the images but we are only interested in the structural features, we do not expect a severe drop in performances due to uncertainty in the source and receivers positions. The migrated images in Figure 4.11 are absolutely comparable with the previous case, in which we have no uncertainty in the acquisition.

Figure 4.12 shows the actual and reconstructed anomaly. The final result is practically identical with the previous case and indicates that the shift estimation and wavefield tomography procedure are weakly sensitive to the source and receiver positioning.

4.5 Discussion

The change of physical properties (such as wave propagation velocity) due to reservoir production leads to apparent shifts in the migrated images obtained from repeated time-lapse
Figure 4.10: (a) Actual time-lapse model perturbation and (b) inverted perturbation after 60 iterations of wavefield tomography. Notice that we are able to correctly image the anomaly and also constrain its lateral extent at about $x = 2$ km. The reduced receiver coverage reduces the extent of the reconstructed anomaly compared to Figure 4.6(b).
Figure 4.11: (a) migrated monitor image obtained using the baseline model and (b) migrated monitor image after inversion in the case of a non-repeatable survey. The monitor data are acquired using source and receivers at different positions with respect to the baseline survey, but the imaged reflectors are weakly sensitive to small perturbations of the acquisition.
Figure 4.12: (a) Actual time-lapse model perturbation and (b) inverted perturbation after 60 iterations of wavefield tomography. Notice that we are able to correctly image the anomaly and also constrain its lateral extent at about $x = 2$ km. Despite the error in the source and receiver location, the inversion result is indistinguishable from the repeatable case in Figure 4.10(b).
seismic surveys of the field. Because the velocity model used in migration is calibrated on the baseline survey, the reflectors in the monitor survey are slightly mispositioned because we are not accounting for the perturbation of the model due to the production of the field. By matching the baseline and monitor migrated images for single shots, we can translate the apparent image shift into a model perturbation. This approach is fully shot-based since the basic building blocks of the inversion procedure are the single-shot migrated images. This feature is advantageous in a real production scenario when it is difficult to repeat a complete survey because of physical obstructions in the field (such as platforms) which can cause big illumination holes in the images. Conducting a complete survey over a producing field is also costly because production must be stopped during acquisition in order to reduce the noise in the seismic data. Our technique addresses this practical problem and can potentially allow for fast and frequent surveys over a producing reservoir.

The advantage of our technique over methods based on wavefield focusing (Girard and Vasconcelos, 2010; Shragge et al., 2012) comes from the reduced implementation cost (no extended images are needed) and the robustness against poor illumination. By analyzing single-shot migrated images, we are automatically taking into account the illumination pattern of the experiments; on the contrary, focusing measures require full aperture or point-spread function compensation to equalize the complex illumination patterns due to the geologic structures and/or acquisition geometry. In this work, we recover a portion of the anomaly from a single migrated shot, which would be impossible using any technique based on focusing. However, a single shot illuminates the medium using a limited set of directions and, in simple settings like the one in our synthetic experiments, every point on the imaged reflectors is illuminated by a single ray. The local coherence of the reflectors allows us to constrain the inversion, nonetheless, more shots are necessary to better reconstruct the spectrum of the anomaly.

In general, velocity anomalies due to reservoir stimulation or production are small relative to the velocity error in the initial stages of model building. Moreover, the baseline velocity
model should already be calibrated and thus be expected to produce a high-quality migrated image. Therefore, our technique based on apparent image shifts is more robust for time-lapse seismic monitoring than for the original migration velocity analysis, when we match a set of inaccurate images.

The main source of noise for the algorithm is related to migration artifacts that may contaminate the single shot migrated images. These artifacts can be due to truncation in the acquisition or to the actual complexity of the velocity medium. In the first case, careful tapering of the data can help reducing or eliminating the migration smiles; in the latter case, nothing can be actually done in the migrated-shot domain. The migration operator is the adjoint (not the inverse) of the forward Born operator, Stolk and Symes (2004) study and explain the nature of these artifacts that appear in strongly refractive media and are related to the inability of the migration operator to handle multipathing using only surface-related coordinates.

4.6 Conclusions

Local correlations evaluated in the image domain allow us to assess the quality of the velocity model from a limited number of migrated images. In 4D seismic applications, we can quickly estimate a perturbation of the migration model by comparing shot images from baseline and monitor surveys. In the image domain, we measure the consistency and similarity of locally coherent events, like the local dip of the reflectors; these features are weakly sensitive to differences in the acquisition geometry and make our approach more robust against survey repeatability issues as compared to alternative strategies in the data domain. The method is able to recover the relative error in the model and does not require separate velocity analysis for baseline and monitor surveys in order to estimate the differences between the models inverted independently.
4.7 Acknowledgment

We would like to thank Jyoti Behura for interesting discussions about 4D time-lapse seismic and for encouraging FP to look into this problem. This work was supported by the sponsors of the Consortium Project on Seismic Inverse Methods for Complex Structures. The reproducible numerical examples in this paper use the Madagascar open-source software package freely available from http://www.ahay.org and the Mines JTK freely available at https://github.com/dhale/jtk.
CHAPTER 5

IMAGE-WARPING WAVEFORM TOMOGRAPHY

A paper to be submitted to Geophysical Prospecting

F. Perrone1 and P. Sava1

5.1 Summary

Imaging the change in physical parameters in the subsurface requires an estimate of the long wavelength component of the same parameters in order to reconstruct the kinematics of the waves propagating in the subsurface. The model is unknown and must be estimated from the same data. One can try to reconstruct the method by matching the recorded data with modeled waveforms extrapolated in a trial model of the medium. Alternatively, assuming a trial model, one can obtain a set of images of the reflectors from a number of seismic experiments and match the locations of the imaged interfaces. Apparent displacements between migrated images contain information about the velocity model and can be used for velocity analysis. A number of methods are available to estimate the displacement between images; in this paper, we compare shot-domain differential semblance (image difference), penalized local correlations, and image-warping. We show that the image-warping vector field is a more reliable tool for estimating displacements between migrated images and leads to a more robust velocity analysis procedure. By using image-warping, we can redefine the differential semblance optimization problem with a residual that is more robust against cycle-skipping than the direct image difference. However, the adjoint-state calculations for this new objective function are excessively complicated and hide the physical intuitions about the tomographic problem. We propose a second approach that has straightforward implementation and reduced computational cost compared to the adjoint-state method calculations. We

1Center for Wave Phenomena, Colorado School of Mines
also discuss the weakness of migration velocity analysis in the migrated-shot domain in the case of highly refractive media, when the Born modeling operator is far from being unitary and thus its adjoint operator (the migration operator) poorly approximates the inverse.

5.2 Introduction

Determining accurate propagation velocities in the subsurface is crucial in seismic imaging and exploration geophysics. A kinematically accurate velocity model allows us to correctly reconstruct Green’s functions and thus precisely image the subsurface discontinuities responsible for the data acquired at the surface or in boreholes. An accurate image of the geologic structure is key for planning drilling operations and for reducing hazards associated with drilling through faults. Seismic propagation velocities are sensitive to the stress conditions in the subsurface and carry information about the orientation of the principal stresses and overpressures (Carcione, 2007), which are both important for mitigating hazards during drilling operations and reducing risk in production.

In recent years, a main distinction has been drawn between methods that recover the velocity model by matching the recorded data with simulated synthetic wavefields modeled in a trial velocity model (Pratt, 1999; Sirgue and Pratt, 2004; Tarantola, 1984), and methods that focus on optimizing properties of the migrated images (Al-Yahya, 1989; Albertin et al., 2006; Biondi and Sava, 1999; Chavent and Jacewitz, 1995; Faye and Jeannot, 1986; Fowler, 1985; Sava et al., 2005). Full-waveform inversion is the name used to indicate techniques that operate in the data domain and focus on the minimization of some functional of the data residual. Migration velocity analysis, or image-domain tomography, identifies all methods that reconstruct the velocity model by analyzing the similarity between migrated images.

Full-waveform inversion is simple to implement, but it is very sensitive to every inconsistency between the recorded and modeled data. It requires an accurate parametrization of the physics of wave propagation, knowledge of the source signature, and a kinematically reliable starting model in order to converge to the global minimum of the objective function (Kelly et al., 2010; Santosa and Symes, 1989). Migration velocity analysis is not as sensitive
to errors in the source signature and it is more robust against errors in the initial velocity model; it is characterized by an objective function which is convex over a wide range of model perturbations and thus intrinsically more suitable for gradient-based optimization procedures. Nonetheless, as it ignores the amplitude information in the data for inversion purposes, migration velocity analysis cannot achieve the high-resolution results that full-waveform inversion promises in the ideal scenario (Warner et al., 2012). Migration velocity analysis is conventionally used to produce a kinematically accurate model to initialize full-waveform inversion for refining the velocity with high-resolution details. In this work, we are interested in the reconstruction of the long wavelength component of the model parameters and thus we focus on image-domain tomography.

Migration velocity analysis is based on the idea that the subsurface is time-invariant on the time scale of the seismic experiment. The images obtained by seismic migration from a series of experiments must agree on the position of the reflectors in the subsurface since the structures that reflect the energy injected by our sources do not change over time. This is the idea behind the semblance principle (Al-Yahya, 1989; Sattlegger, 1975).

Differential Semblance Optimization (DSO) is a popular solution for measuring the consistency of a set of images and correcting the errors in the migration velocity model (Symes, 1993). Applications of DSO include both regularization for data domain inversion (Plessix, 2006; Symes and Carazzone, 1991) and stand-alone migration velocity analysis techniques in an extended space (Shen and Symes, 2008; Symes, 2008).

Shot-domain migrated images are obtained by applying the adjoint single-scattering Born operator to the acquired data. Because the migration operator is an adjoint and not an inverse operator, in extremely refractive media, the individual migrated images can be contaminated by kinematic artifacts (Stolk and Symes, 2004). This problem is addressed by stacking, which makes migration an approximation of the inverse operator up to a dip-dependent scaling factor. For velocity analysis, we want to preserve the dimensionality or the data and avoid stacking. Data can be mapped in the image domain as a function of
surface or subsurface offset, reflection angle, or even shot coordinate. These mappings allow us to maintain the dimensionality of the data and use the semblance principle to evaluate the correctness of the velocity model. However, some domains are more suitable than others for migration velocity analysis; Zhang et al. (2010) give a quick yet clear explanation of the differences, strong and weak points of different mappings. Angle-domain common-image gathers (ADCIG) are currently the tool of choice to assess the quality of the migration velocity model. In 2D, Sava and Fomel (2003) proposed a numerically efficient algorithm for computing ADCIG however the computation of angle gathers in 3D is still topic of active research.

DSO in the shot-migrated domain is very easy to implement but suffers from the non-optimality of the single-shot migrated images for velocity analysis. The shot-domain is likely the least suitable domain for constructing gathers because of the migration artifacts that contaminate the single-experiment migrated images (Stolk and Symes, 2004; Zhang et al., 2010). On the other hand, shot-domain common-image gathers are an automatic output of migration schemes such as reverse-time migration and do not require any additional processing. Moreover, since reverse-time migration is the gradient of full-waveform inversion, shot-domain images could be used to regularize the inversion in a structure-oriented fashion and without imposing arbitrary smoothness constraints. The ability to extract velocity errors from single-shot migrated images can thus be useful not only as an image-domain tomography approach but also as a way to regularize data-domain techniques, such as full-waveform inversion.

This paper deals with the estimation of the velocity model using image-warping. Image-warping allows us to counterbalance the noise in the shot-domain image gathers with the lateral coherency of the imaged structures. Perrone et al. (2012) derive an approximation for the image perturbation based on the estimated displacement field and design a linearized wave-equation migration velocity analysis algorithm based on the method developed by Sava and Biondi (2004). The method presented in Perrone et al. (2012) relies on
several approximations and linearizations: the wave-equation migration velocity analysis operator is obtained from the phase-shift continuation operator. The entire inversion procedure stems from the particular form of the extrapolation operator that allows one to derive a linearized operator which links perturbation in the image space to perturbation in the model (slowness) parameters. Because of the strong assumption of a phase-shift continuation wave-extrapolator, this method cannot be applied to images obtained using different engines (for example, with reverse-time migration). Moreover, events that are not correctly handled by the extrapolation operator (for example, diving waves and overturning reflections) become noise for the inversion scheme. In order to generalize the wave-equation migration velocity analysis method for nonlinear inversion, Perrone and Sava (2012b) propose an image-domain wavefield tomography approach where the residual is computed from estimates of local shifts between migrated images. The method presented in Perrone and Sava (2012b) involves the solution of the full two-way wave equation and thus integrates reverse-time migration into the inversion procedure. The shifts are obtained from penalized local correlations of images from nearby experiments, and the adjoint-state method allows us to compute the gradient of the objective function for implementing a local gradient-based nonlinear inversion. The method shows weak points when reflectors are located near the acquisition surface and when several reflectors fall inside the same local window, thus biasing the computation of the local correlations through the crosstalk between the closely spaced events.

We extend the linearized wave-equation migration velocity analysis algorithm of Perrone et al. (2012) to incorporate a two-way extrapolation engine and to directly exploit the displacement field. The displacement vector field is used to estimate an image perturbation; then through single-scattering Born modeling, the wavefield perturbation is computed. The correlation between the scattered and background wavefields represents the kernel for the model update. We compare the objective functions based on DSO, local image correlations, and image-warping, and show that the displacement field leads to a robust objective function and model update.
5.3 Theory

Differential Semblance Optimization in the shot-image domain minimizes the energy of the difference of neighboring images (Symes, 1993):

\[J_{DSO}(m) = \frac{1}{2} \sum_i \| R_{i+1} - R_i \|^2, \tag{5.1} \]

where \(R_i(x) \) is the migrated image obtained from the \(i \)th shot, \(m(x) \) represents the model parameter, and \(x = (x, y, z) \) is the position vector. Perrone et al. (2012) show that the objective function in equation 5.1 can be approximated using the concept of image-warping as

\[J_{WARP}(m) = \frac{1}{2} \sum_i \| \nabla R_i \cdot u_i \|^2, \tag{5.2} \]

where \(u_i(x) \) is the displacement vector field that maps \(R_i \) into \(R_{i+1} \) and \(\nabla R_i \) is the gradient of the migrated image. Image-warping is more robust against cycle skipping and leads to smoother sensitivity kernels for image-domain tomography. Perrone et al. (2012) also show that the quantity \(\nabla R_i \cdot u_i \) can be related to the geometrical relations between displacement and dip of the imaged structures; in particular, when the velocity model is accurate, the dip and displacement vector field are point-wise orthogonal.

Perrone et al. (2012) use the approximation of the image difference in equation 5.2 in the framework of the wave-equation migration velocity analysis algorithm developed by Sava and Biondi (2004). Through a linear operator obtained from the phase-shift migration operator, the image perturbation \(\nabla R_i \cdot u_i \) is related to an associated slowness perturbation. By solving a series of linear problems with the image perturbation as input data, one can then reconstruct the slowness perturbation.

Displacement vectors \(u \) are obtained by an iterative search of the maximum of local correlations and warping of the input images; the algorithm is the same used for measuring the apparent shift between migrated images in 4D seismic processing (Hale et al., 2008). The displacement vector field is such that
\[R_i (x + u) = R_{i+1} (x) , \]

and is obtained by computing the (possibly) fractional correlation lag that maximizes the local correlation panels:

\[u (x) = \text{arg max}_\lambda c (x, \lambda) , \]

where \(c (x, \lambda) = \int w (x) R_i (\xi - \frac{\lambda}{2}) R_{i+1} (\xi + \frac{\lambda}{2}) \, d\xi \) is the local correlation of two images \(R_i (x) \) and \(R_{i+1} (x) \), and \(w (x) \) are seamlessly overlapping windows. The \(\text{arg max} \) operator is not differentiable and thus one cannot compute the Frechet derivative with respect to the model parameters directly. Because of this, the development of a fully nonlinear inversion scheme is not straightforward. Perrone and Sava (2012b) use penalized local correlations between migrated images to measure the shift normal to the structural dip. Their objective function is the energy of the estimated normal shift. Penalized local correlations can be differentiated with respect to the state variables and allow one to use the adjoint-state method to compute the gradient of the objective function (Fichtner et al., 2006; Lions, 1972).

A rigorous adjoint-state calculation for the objective function in equation 5.2 can be worked out using the idea of connective functions introduced by Luo and Schuster (1991) for traveltime tomography. The major difference of using connective functions in the framework of migration velocity analysis is the higher dimensionality of the image space compared to the data domain. In the data domain, the shifts are one-dimensional (along the time axis, between observed and synthetic traces); in the image domain, the displacement vectors are multidimensional, which considerably increases the computation complexity and cost of the gradient. In appendix A, we show the calculations of the gradient of the objective function in equation 5.2 using connective functions.

We can obtain a simpler tomographic algorithm by strengthening conventional DSO using image-warping. The adjoint-state calculations for DSO (Plessix, 2006; Symes, 1993) show that the adjoint sources depend on the second derivative of the migrated images along the experiment direction. The migrated images can cycle-skip if the velocity error is such that...
the position of the reflector differs more than a quarter of a wavelength in space. Using image-warping, we modify the DSO adjoint-source and make it more robust against cycle skipping. Our approach can also be related to the work of Xu et al. (2012b), who follow a two-step, migration/demigration to compute the Frechét derivative of the objective function with respect to the smooth part of the model and recover the long wavenumber components of the velocity field. Another work on a similar path is the differential waveform inversion presented by Chauris and Plessix (2012) again in the framework of FWI.

5.3.1 Adjoint-State Method, Demigration, and Iterative Nonlinear Inversion

The dot product between the gradient of the migrated image and the apparent displacement field between two images (equation 5.2) is a linear approximation of the image difference with respect to the displacement vector (Perrone et al., 2012). Compared to the image difference, equation 5.2 is less affected by cycle skipping due to the change of the shot location and is less prone to cycle skipping problems because warping maps every event in one image to the corresponding event in the second image. The relation between the image difference and the dot product of image gradient and displacement field can be used to set up a wavefield tomography procedure that is based on the image difference objective function, but that is more robust.

The adjoint-state calculations for the image difference objective function are well-known in the geophysics literature (Plessix, 2006; Symes, 1993). The major weak points of this approach are related to sensitivity to the acquisition geometry and cycle skipping in the image domain (discussed in Perrone et al. (2012)) and the kinematic artifacts, which are due to the migration operator being the adjoint and not the inverse of the Born modeling operator (Stolk and Symes, 2004).

The adjoint sources $g_{si}(x,t)$ and $g_{ri}(x,t)$ for the image-difference DSO objective function are straightforward to compute. They depend on the second derivative of the migrated images along the shot axis of the prestack image cube and the source and receiver wavefields $u_{si}(x,t)$ and $u_{ri}(x,t)$ computed in the background model (Plessix, 2006):
The functions in equation 5.5 and 5.6 are the force terms for the adjoint wave-equations

\[g_{s_i} = (R_{i-1} - 2R_i + R_{i+1}) u_{r_i} \]
\[g_{r_i} = (R_{i-1} - 2R_i + R_{i+1}) u_{s_i}. \]

The adjoint sources generate the scattered fields due to the reflectivity perturbation represented by \((R_{i-1} - 2R_i + R_{i+1}) \). These wavefields can also be interpreted as the demigrated reflectivity perturbation \((R_{i-1} - 2R_i + R_{i+1}) \). The gradient of the objective function is then the zero-lag time correlation of the background and adjoint wavefields (Fichtner et al., 2006; Plessix, 2006).

By inspecting equations 5.5 and 5.6, we can immediately see the practical issues of implementing waveform tomography by minimizing the energy of the image difference. Cycle skipping may arise when the velocity model is severely inaccurate because different images map the same structures at inconsistent positions in the subsurface.

We propose to replace the term \((R_{i-1} - 2R_i + R_{i+1}) \) in the expression of the adjoint sources with an approximation derived from image-warping. The apparent displacement field removes the cycle skipping problem by warping one image into its neighbor. Let us indicate with \(u^-_i \) and \(u^+_i \) the apparent displacement fields that warp \(R_i \) into \(R_{i-1} \) and \(R_i \) into \(R_{i+1} \), respectively. Notice that the reference image \(R_i \) is the same for the two displacement vector fields: this is important to obtain smooth sensitivity kernels and avoid cycle skipping. We can construct approximations of the image differences by computing the dot product of the image gradient with the displacement fields (Perrone et al., 2012). In order to guarantee symmetry with respect to the \(i \)th shot, we use \(R_i \) to construct the image perturbations
Using the expressions in equations 5.9 and 5.10, we can approximate the second derivative along the shot axis as follows:

\[R_{i-1} - 2R_i + R_{i+1} \approx \Delta R_i^- + \Delta R_i^+, \]

which is robust against cycle skipping because only one image \(R_i \) enters the expression of the image perturbation.

5.4 Numerical Examples

We test image-warping wavefield tomography for different depths of the reflecting interface and compare it with the direct image difference tomography approach (Plessix, 2006; Symes, 1993) and local image correlation wavefield tomography (Perrone and Sava, 2012b). We show that image-warping wavefield tomography is more robust with respect to the depth of the reflector (i.e. the ratio between the source receiver offset and the depth of the reflector) and leads to more stable gradients for a model update. We also show how the method fails to produce sensible gradients in highly refractive media, despite the fact that the objective function is able to identify the correct model. In this later case, the displacement estimation is stable but the artifacts in the migrated image lead to spurious scattered wavefields and artifacts in the sensitivity kernel. Finally, we test our method on the Marmousi model.

5.4.1 Horizontal Reflector

Let us consider a flat horizontal reflector in a homogeneous velocity model. In the first case, the interface is at 2 km depth and it is due to a density contrast. In order to measure errors in the velocity model, we analyze two nearby shots: the shot position of the first shot is \(x = 3.8 \) km and the distance between the shots is 200 m. We apply different homogeneous perturbations to the model and we compute sensitivity kernels using
using image-warping wavefield tomography and differential semblance. Figure 5.1 shows the

comparison of the sensitivity kernels for 3 migration models. The rows of Figure 5.1 are, from
top to bottom, kernels for a high, the correct, and a low migration velocity; the columns,
from left to right, show the results using image-warping or standard differential semblance
based on image difference. Image-warping resolves the cycle skipping between the migrated
images that causes the strong sidelobes in differential semblance. Using image-warping to
modify the expression of the adjoint source of differential semblance, we obtain very smooth
sensitivity kernels that correctly represent the perturbation in the velocity model. Figure 5.2
compares the sensitivity analysis performed using the image-warping approximation of the
image difference and standard differential semblance. Notice that in Figure 5.2(a) we observe

Figure 5.1: Sensitivity kernels obtained from a deep interface using image-warping wavefield
tomography for (a) high, (c) correct, and (e) low velocities, and using differential semblance
wavefield tomography for (b) high, (d) correct, and (f) low velocities.
more symmetrical behaviour with respect to the perturbation compared to Figure 5.2(b). Cycle skipping may be the cause of the loss of resolution.

![Graph](a)

![Graph](b)

Figure 5.2: Objective functions for (a) image-warping wavefield tomography and (b) differential semblance evaluated for a set of model perturbations and the deep interface. The minimum of the objective function indicates the correct model. Differential semblance shows a slightly less resolute objective function for positive slowness anomalies.

We also consider a shallower interface and compare the single scattering approach with the penalized local correlations. We consider a model where the density interface is at 1 km depth. The model perturbations applied to the velocity field are the same used as in the previous case. As in the previous case, the position of the first shot is at \(x = 3.8 \) km and the shot separation is 200 m. The comparison of the sensitivity kernels for image-warping and penalized local correlation wavefield tomography are shown in Figure 5.3. In the left
Figure 5.3: Sensitivity kernels obtained from a shallow interface using image-warping wavefield tomography for (a) high, (c) correct, and (e) low velocities, and using penalized local correlations wavefield tomography for (b) high, (d) correct, and (f) low velocities. Penalized local correlation are strongly biased at the edges of the subsurface aperture.
column, image-warping shows the ability to return kernels with the correct sign even when the interface is close to the surface, and cycle skipping problems are enhanced because the difference between the apertures of the two shots increases. Penalized local correlations suffer from the strong bias at the edges of the aperture, where the two images do not overlap. The comparison of the objective functions for different values of the model perturbation in

Figure 5.4: Objective functions for (a) image-warping wavefield tomography and (b) penalized local correlations evaluated for a set of model perturbations and the shallow interface. Penalized local correlation fail to identify the correct model.

Figure 5.4 highlights a strong bias for the penalized local correlations when the reflecting interface is shallow and the ratio between the depth of the interface and the shot separation is small. Nonetheless, the gradients obtained using image-warping for a deeper interface are comparable with the results reported in Perrone and Sava (2012b) for the objective function
employing local image correlations. Thus, image-warping and penalized local correlations are expected to perform similarly when the ratio between the depth of the reflector and the shot-point separation is large. When compared to Figure 5.2(a), image-warping appears to be insensitive to the depth of the reflector.

5.4.2 Highly Refractive Model and Migration Failure

When the model is highly refractive, kinematic artifacts contaminate the single-experiment migrated images, even though the exact model is used to reconstruct the source and receiver wavefields (Stolk and Symes, 2004). This fact is due to the very nature of the migration operator, which is the adjoint of the Born modeling operator and not its inverse.

Figure 5.5 shows the velocity model and density model we use to study the behavior of image-warping wavefield tomography in highly refractive media. The model contains a strong low velocity Gaussian anomaly, whose minimum value is 40% lower than the background 2 km/s velocity. The reflector is simulated by a density contrast. The data are generated using a 15 Hz Ricker wavelet and a staggered-grid finite-difference algorithm with absorbing boundary conditions on every side. The horizontal sampling is 20 m and the vertical sampling is 10 m.

The low velocity area in the model creates triplications of the wavefields. The shot-gather in Figure 5.6 shows the complexity of the wavefield recorded at the surface. The source is located at $x = 3$ km on the surface and receivers are at every grid point at the surface. Figure 5.7(a) shows the result of migrating the shot-gather in Figure 5.6 with the exact model. Notice that at about $x = 5$ km the image is distorted by the kinematic artifacts described in Stolk and Symes (2004). These artifacts do not satisfy the relationship between the dip field and displacement vector assumed in our inversion procedure. Moreover, since the migration operator is simply the adjoint, and not the inverse, of the Born modeling operator, the amplitudes of the image are corrupted as well. All these distortions affect the calculation of the sensitivity kernel. In Figure 5.7(b), we show the sensitivity kernel computed for the exact velocity model. Instead of having negligible amplitude, the sensitivity kernel is strong
Figure 5.5: (a) Velocity model used to study the behavior of the inversion in highly refracting media. The low velocity anomaly is Gaussian-shaped and its minimum value is 40% lower than the 2 km/s background. (b) Density model used to generate reflections.
Figure 5.6: Shot-gather for a source at $x = 3$ km. Notice the complicated response of the medium due to the triplications of the wavefield passing through the low velocity anomaly and totally spurious.

Figure 5.8 shows the objective function obtained by perturbing the correct model with a Gaussian anomaly that progressively cancels out the low velocity zone. Interestingly, although the sensitivity kernel is inaccurate, the objective function is still able to measure the distance from the correct model. This indicates that although the velocity error measure is efficient, the linearizations used for computing the sensitivity kernels and model update can introduce strong errors.

5.4.3 Marmousi Model

We also test our approach on the Marmousi model (Figure 5.9(a)). We model 100 shots separated by 80 m. The spatial sampling is 8 m in both the x and z direction. Receivers are located at every grid point on the surface. The data are modeled without free-surface multiples but internal multiples are present in the data. We assume that free-surface multiples can be effectively removed from the data using SRME (Verschuur, 1991). The Marmousi model represents a complex land-like scenario and is characterized by multipathing and strong re-
Figure 5.7: Migrated image obtained from the shot-gather in Figure 5.6 with the correct velocity model. Observe the distorted image of the reflectors and the artifacts introduced by the migration operator. (b) Sensitivity kernel obtained using image-warping wavefield tomography for the correct velocity model. The kernel should be very small and incoherent because the model is actually correct; the spurious kernel is thus completely due to the artifacts in the image.
Figure 5.8: The objective function obtained by perturbing the model with a Gaussian anomaly having the same extent of the one in the correct model but with different amplitudes. Notice that the objective function correctly measures errors in the velocity model.
fractions. This complexity is exemplified by the raypaths calculated in a smoothed version of the correct model (Figure 5.9(b)) for a shot at \(x = 4.8 \) km.

Figure 5.10 shows the preprocessing applied to the shot gathers before imaging and inversion. In Figure 5.10(a), we display the shot-gather for a source located at \(x = 1.6 \) km after removal of the direct arrival. In order to balance the amplitude of the reflection events and of the reflectors in the image, we equalized each trace by scaling them by a smooth local estimate of the rms value along the trace itself. Figure 5.10(b) shows the result of applying the amplitude equalization to the shot-gather in Figure 5.10(a) and then smoothly muting the refracted energy. Notice that the later arrival are much more visible after the amplitude equalization.

The initial model is the vertical gradient of velocity in Figure 5.11(a). The velocity increases 0.5 km/s with depth and is generally slower than in the correct model. The migrated image obtained using this model is shown in Figure 5.11(b). The central part of the image is non interpretable and all reflectors are mispositioned and defocused; the deep and strong reflectors are shifted about 500 m upward. The noise in the image is due to the strong errors in the migration model and the inconsistent imaging of the reflectors from different shots. Also, the internal multiples in the data are not imaged correctly since migration is based on single-scattering (Born) assumptions. The complex wave propagation, the strong refractions, and the internal multiples contribute noise and artifacts in the migrated image. For example, at \(x = 1 \) km and \(z = 2.7 \) km ghost reflectors due to strong internal multiples can be observed, and in the central part of the model, at \(x = 4.5 \) and \(z = 2 \) km, the unfocused events do not combine constructively and lead to random noise rather than an image of the geologic structures. In the latter case, the complexity of the faulted portion of the model creates scattering that is not correctly remapped using the initial model in Figure 5.11(a). These artifacts are the main source of noise for our wavefield tomography approach since they do not carry information about specular reflections and since they decrease the reliability of the estimated displacement vector field, and thus of the adjoint sources. By analyzing
Figure 5.9: (a) Exact Marmousi model and (b) ray-tracing through a mildly smoothed version of the model in (a). Observe the complex ray paths, which highlight the refractive behaviour of the model.
Figure 5.10: Shot-gather with source at $x = 1.6$ km; (a) the reflection data after the removal of the direct arrival and (b) after applying amplitude equalization and smooth tapering of the refracted energy. The amplitude equalization is implemented by scaling each trace by a smooth local estimate of the rms of the trace itself.
the partial images, we observe that the unfocused reverberations contribute steeply dipping and short wavelength artifacts, which can be attenuated by low passing the image in the horizontal direction. More sophisticated filtering techniques, e.g. in the curvelets domain, may help preserving the amplitudes of the signal and thus further increasing the quality of the computed gradient.

Figure 5.11: (a) The initial model represented by an incorrect too slow \(v(z) \) velocity. (b) The migrated image is distorted and not interpretable in the central part of the model. Observe the general upward shift of the image due to the bias in the velocity model.
For comparison, Figure 5.12 shows the gradient of the objective function computed using DSO and image-warping. The gradient of the objective function is computed with respect to slowness squared. Blue indicates that the velocity in the model should be increased and red indicates that the velocity should be decreased. In Figure 5.12(a), the gradient computed from standard image differences (i.e., DSO) shows random values and does not represent a reliable direction for updating the model. In this case, the error in the migration model leads to severe cycle skipping between adjacent images, especially at mid and large offsets. Image-warping correctly captures the shifts between the migrated images and, as a consequence, removes the cycle skipping problem; the gradient in Figure 5.12(b) shows higher degree of regularity and supplies a more reliable update for the model. Notice that the regularity of the gradient in Figure 5.12(b) decreases in the central part of the model. The faulted structure in the mid part of the model (at about $x = 4.5$ km) contains strong contrasts in propagation velocity and lateral discontinuities that produce strong reverberations and complex wavepaths. As a consequence, the single shots migrated images are contaminated with strong artifacts compared to images of the more regular sedimentary portions of the model on the sides. Moreover, the gradient seems relatively insensitive to the different values of the velocity anomaly and does not highlight the high velocity layers and blocks on either the sides and the faulted area of the model.

We implement a simple steepest descent scheme to reconstruct the velocity model. The gradient of the objective function is smoothed along the structures in the image and then equalized using the source-side illumination map. In this inversion exercise, we focus on recovering the trend of the model. We further smooth the computed gradient using a triangular smoother 400 samples lateral extent and 80 samples vertical extent. Effectively, we aim to reconstruct the very long wavelength components of the velocity field. The model update is obtained by scaling the gradient with a scalar step-length. The step-length is computed by parabolic fitting of three values of the objective function in 5.2. Figure 5.13 shows the final model recovered by image domain wavefield tomography and the associated
Figure 5.12: (a) The gradient of the standard DSO objective function and (b) the gradient obtained by modifying the adjoint sources using image-warping. In both cases, the gradient is with respect to slowness squared; blue indicates that slowness shall be decreased and red indicates that slowness shall be increased. For this particular initial model, DSO does not provide a useful gradient for wavefield tomography.
migrated image. The inversion reconstructs the very smooth background velocity model in Figure 5.13(a), which is characterized by a steeper velocity gradient than the initial model in Figure 5.11(a). By comparing the exact model in Figure 5.9(a) and the final image in Figure 5.13(b), we can see that image-warping wavefield tomography is able to better position reflectors where the geology is relatively simple and the geometrical features of the image can be measured more precisely. In the shallower part of the model, the truncation of the sediments against the faults is now better interpretable (e.g. \(x = 3.5 \) km and \(z = 1.0 \) km and along the fault that reaches the surface at about \(x = 5.0 \) km). However, the quality of the image in the central, faulted portion of the model, because of the high level of coherent noise in the partial images, is quickly decreases.

Figure 5.14 shows that the objective function decreases smoothly and monotonically but the convergence slows down after about 50 iterations. The nonzero value of the objective function is mainly due to migration artifacts, whose contribution becomes significant with respect to the shifts measured on actual reflectors.

Finally, we used the model reconstructed by image-warping wavefield tomography as the initial guess for data-domain full-waveform inversion. Figure 5.15 shows the final reconstructed model after 60 iterations of full-waveform inversion. The data used for the data-domain inversion test are the low-passed filtered version of the data used for image-domain tomography; the cut-off frequency is 3 Hz. Full-waveform inversion converges to a high-resolution result and reconstructs high-wavenumber features of the model. Compared to the actual Marmousi model in Figure 5.9(a), we were able to accurately reconstruct the geology in the central part of the model and up to a depth of about 2.5 km. The quality of the result comes from the correct kinematics of the wavefields in the sedimentary part of the model, which was reconstructed by image-warping wavefield tomography and allows one to correctly position the reflectors. Image-warping tomography recovers the very low wavenumber components of the velocity model, which are crucial to avoid cycle-skipping in data-domain inversion. The deeper part of the model, below 2.5 km, is poorly constrained.
Figure 5.13: (a) Recovered velocity model and (b) migrated image using the result of the inversion. To reduce the influence of the migration artifacts, we focus on the long wavelength of the velocity field by smoothing the computed gradients and correct the bulk shift of the main reflectors.
Figure 5.14: The value of the objective function decreases smoothly with iterations. Convergence slows down after 50 iterations because the residuals measured on migration artifacts becomes significant with respect to the residual measured on actual reflectors.

Figure 5.15: Full-waveform inversion result obtained using the image-warping wavefield tomography inverted model in Figure 5.13(a) as initial guess. The data are low-passed filtered with cut-off frequency of 3 Hz. The improved kinematics of the model obtained by image-warping wavefield tomography removes the cycle-skipping problem in the data domain and allows one to reconstruct a high-resolution model.
by the data. Image-warping wavefield tomography is not able to correct the velocity gradient and consequently the quality of the data-domain inversion is lower, as well.

5.5 Discussion

The image difference objective function proposed by Symes (1993) and Plessix (2006) as a regularization term for full-waveform inversion is simple to implement and carries straightforward physical intuition about the action of the inversion. In media that are not strongly refractive, cycle skipping can be effectively and efficiently avoided using the apparent displacement field between migrated images and constructing robust approximations of image differences. Estimating the displacement field and computing the image gradient have a negligible computational cost compared to migration. Moreover, we preserve the physical interpretation of the image perturbation that enters the expression of the adjoint sources in equations 5.5 and 5.6, which is useful for quality control and for quickly assessing the evolution of the inversion result. The residual evaluation is immediate and the calculation of the adjoint sources is straightforward compared to local correlation waveform tomography, where the computation of the adjoint-sources requires nonstationary convolutions between the migrated images and the penalty operators followed by local scaling by the background wavefields. When compared to methods that require image-gathers or extended images, image-warping wavefield tomography appears easier to implement and less computationally demanding. On the other hand, by stacking contributions from different experiments, methods based on image-gathers are intrinsically less sensitive to random noise and can also attenuate the migration operator noise.

The adjoint-state calculations for the objective function in equation 5.2 are computationally expensive and involved. In appendix A, we show that not only the background wavefields but also their spatial derivatives are required. Moreover, the warping field requires a dedicated procedure based on connective functions, which link the warping vectors to the velocity model, and this more complicated procedure would not remove the sensitivity to migration artifacts. From an inversion perspective, this step increases the dimensionality
of the problem; Luo and Schuster (1991) operate on scalar shifts whereas we manipulate vectors defined at every point in the discretized space. A further difference between image and data domain is the presence (or lack thereof) of artifacts. The data represent the ground truth that we want to match, whereas the single migrated images are contaminated by the migration operator noise. Because of this, the data domain appear to be more suitable for measuring shifts between waveforms than the image domain. On the other hand, the most reliable information about traveltimes comes from transmitted and refracted waves, which can be missing depending on the model and/or acquisition design. In this second case, measuring relative shifts in the image domain can still supply valuable information for reconstructing the velocity field.

Computing the relative shift between two images in local seamlessly overlapping windows requires some degree of overlapping of the two migrated images. The quantity of interest to qualitatively characterize the distance between the two images in simple subsurface geometries is the ratio between the shot-point separation and the depth of the reflectors. The smaller this ratio, the greater the overlap between migrated images. When we estimate the shift between the migrated images using penalized local correlations, the extent of the local window constrains the domain in which the maximum of the correlation must be. When the separation between the shot is large and the local window is not wide enough to capture the position of the maximum of the local correlation, we introduce an error in the evaluation of the residuals. Notice that increasing the size of the local correlation window implies a decrease in resolution. Moreover, if other events (more reflectors) enter the local window and/or the reflector changes orientation in space, increasing the extent of the local window implies a drop in the values of the estimated correlation coefficients and thus a decrease in the quality of the estimated shifts. The displacement vector field is more robust than the penalized local correlations because of the iterative search and warping procedure used (Hale et al., 2008) and thus it allows us to obtain high-quality velocity updates at shallow depths where the ratio between the shot distance and the depth of the reflector is relatively high.
The main drawback of performing inversion in the shot-migrated image domain is related to the nature of the migration operator and to the associated migration artifacts. In highly refractive media, triplications and multipathing between source and receiver produce artifacts in the migrated image (Stolk and Symes, 2004). The artifacts are due to the migration operator being the adjoint and not the inverse of the Born modeling operator; they have the same frequency content of the signal and, although stacking over experiments removes them from the final image, they severely contaminate the migrated images for individual shots. These kinematic artifacts represent the principal source of noise for our method: they do not satisfy the assumed relation between the directions of the image gradient and displacement vector field; moreover they introduce events with conflicting dips in the image that make the estimation of the displacement field noisier. Least-square migration (Nemeth et al., 1999) may be a possible solution in the case of white Gaussian noise but would increase the computational cost and time. Unfortunately, migration artifacts do not follow a Gaussian distribution and thus least-squares migration is ineffective in removing migration artifacts from single-shot images.

A substantial difference of image-warping wavefield tomography with respect to methods based on extended images (Shen and Symes, 2008; Yang and Sava, 2011a), which involve all shots in the construction of the adjoint sources, is the fundamentally different tomographic behaviour. As described in Vasconcelos et al. (2010), extended images represent the reflection response for virtual sources constructed in the subsurface at specific locations through interferometry. These sources illuminate a wide range of directions and thus the sensitivity kernels obtained from each point have a wide spatial spectral content. On the contrary, our method (and conventional differential semblance in the shot-domain) constructs the adjoint sources from single images, each of which is illuminated from a very limited range of direction. The poor illumination of the model that individual images supply reflects in extremely smooth sensitivity kernels that do not capture high wavenumber features in the model.
In complicated models, such as the Marmousi model, regularization plays an important role in balancing the strength of the update and removing the natural bias that comes from the uneven illumination and the complexity of the subsurface structures. The smoothness and regularity of the estimated displacement vector field is also very important since it controls the quality of the adjoint sources and the smoothness of the sensitivity kernels. Nonetheless, image-warping wavefield tomography appears to be characterized by smooth gradients that can be used to easily correct substantial errors in the velocity models and then to bootstrap or regularize velocity analysis schemes that supply higher resolution.

5.6 Conclusions

The image-difference objective function for wavefield tomography in the migrated-shot domain can be made more robust using image-warping. The displacement vector field that warps a migrated image into the image obtained from a neighboring experiment removes cycle-skipping because every reflector in one image is mapped into the corresponding event in the second image.

Our method is more effective than local image correlation wavefield tomography for shallow reflectors, i.e., when the ratio between the source separation and the depth of the reflector is high. However, kinematic artifacts contaminate the image in highly refractive media and destabilize the computation of the sensitivity kernel. Nonetheless, in non-pathological cases, the image-warping objective function can measure the distance between different models and identify the most coherent images, thus enabling local gradient-based optimization.

An inversion test on the Marmousi model shows that image-warping wavefield tomography is able to correct strong errors in the velocity model where the geometry of the reflectors is relatively simple and regular. Although kinematic artifacts in the single shot migrated images prevent a successful inversion in complex areas, the correct reconstruction of the very low wavenumber components of the model makes it possible to use the result of image-warping wavefield tomography as an initial model for higher-resolution techniques and to avoid cycle-skipping in the data-domain.
5.7 Acknowledgments

This work was supported by the sponsors of the Consortium Project on Seismic Inverse Methods for Complex Structures. The reproducible numerical examples in this paper use the Madagascar open-source software package freely available from http://www.ahay.org and the Mines JTK freely available at https://github.com/dhale/jtk.
6.1 Main Conclusions

Conventional shot-domain common-image gathers are not suitable for migration velocity analysis because they are affected more than other gathers by the noise of the migration operator, i.e. the migration artifacts that contaminate the single shot image. Even when the model is not highly refractive, if the velocity error is strong, differential semblance optimization produces low quality gradients due to cycle skipping between the migrated images. Image-warping removes the problem of cycle skipping in a natural and intuitive way with minimum computational cost.

6.1.1 Image-Warping and Differential Semblance

In Chapter 2, I show the connection between the image difference and image-warping using a Taylor expansion of the image with respect to the estimated apparent displacement vector field. The displacement vectors map each point in a reference image to the corresponding point in a second image and describe the warping transformation that links the two images. The warping vector field allows one to design an image perturbation that can be linked to the perturbation in the migration model via a linearized operator obtained from the one-way downward continuation operator used in migration.

6.1.2 Geometrical Relationship between Structural Information and Warping

The warping vector field encodes the apparent displacement between migrated images. The approximation derived in Chapter 2 links the image difference, the gradient of the migrated image, and the warping field. In particular, the approximation highlights the geometrical relation that the warping vector and the dip of locally planar events must satisfy when the migration model accurately describes the wave kinematics.
Errors in the velocity model introduce a component in the warping field that is aligned with the dip of the reflector. In Chapter 3, I developed a measure of the normal component of the apparent shift using penalized local correlations. This approach allows me to design an optimization problem that does not rely on linearizations of the wave propagation and migration operators. In particular, it allows me to include a two-way wave propagation operator in the inversion and thus integrates reverse-time migration in the velocity estimation procedure.

6.1.3 Inversion of Apparent Displacements in the Image Domain

In Chapters 3 and 4, I show how to measure and successfully invert apparent displacements between neighboring shot-gathers in the image domain. I implemented a wavefield tomography algorithm that can be used for velocity model building, in the context of migration velocity analysis, and for monitoring changes in a reservoir under depletion, in the context of 4D time-lapse seismic. This approach exploits the local coherency of the reflectors in the image domain to balance either the poor quality of the gather or the lack of data in the shot direction and allows one to reconstruct anomalies in the migration model from a minimum number of shot gathers.

6.1.4 Superiority of Warping Vectors over Penalized Correlations

In Chapter 5, I point out the deficiencies of penalized local correlations and use the warping relations between migrated images (Chapter 2) to make the conventional differential semblance optimization in the shot-domain robust against cycle-skipping and differences in the shot aperture. In contrast to the algorithm presented in Chapter 2, in Chapter 5 I used a two-way wave propagation operator. Image-warping wavefield tomography produces smooth sensitivity kernels that easily reconstruct the very long wavelength components of the velocity model with negligible additional computational cost with respect to conventional differential semblance optimization.
6.2 Future Research and Suggestions

In this thesis, I focused on 2D tomography and used crosscorrelation measures to estimate displacements and vector fields. Here, I would like to suggest some direction for future research and development.

6.2.1 Artifact-free Migration Algorithm

Seismic migration is mathematically defined as the adjoint of a forward single-scattering Born modeling operator. If the complexity of the model is such that the forward operator is not diagonal or diagonally dominant, the application of the adjoint operator to the data introduces coherent noise in single experiment images. These artifacts are the main source of noise for my approach since they do not satisfy the geometrical relations between the warping and dip vector field. The development of an imaging algorithm capable of migrating single experiments without introducing migration artifacts would greatly improve the quality of the inversion.

6.2.2 Warping Vector Field Calculation

My inversion approach relies on the accurate estimation of the relative displacements between migrated images. The vector displacements, which are a more robust measure of shifts than penalized local correlations, are also based on local correlations and are subject to the noise introduced by migration artifacts as well. Techniques based on the solution of a global optimization problem, e.g. dynamic image-warping, are likely to produce higher quality estimates of the displacement field. A more robust estimation of the warping field can be beneficial for further improving the quality of the sensitivity kernels and for increasing the resolution of the inversion. Although a direct multidimensional estimation of vector displacements using dynamic image-warping would be computationally very expensive, one can measure one-dimensional shifts along the coordinate axes, warp the input signal, and thus iteratively build the total vector displacement field. This approach is analogous to the procedure implemented for local image correlations and is computationally efficient.
6.2.3 Bi-objective FWI/MVA Optimization

Shot-domain gathers are naturally produced by many migration algorithms, in particular reverse-time migration, without any extra computational cost. Reverse-time migration (up to the appropriate scaling) is the gradient of full-waveform inversion. A velocity analysis approach that effectively uses the information contained in the partial contributions coming from each individual experiment represents an ideal regularization approach to control the long wavenumber components of the model.

A natural development of this work would be to integrate my image-domain wavefield tomography algorithm into conventional full-waveform inversion. The image-domain misfit term represents more than just regularization because it introduces actual information about the velocity model and not just \textit{a priori} information about the smoothness of the macro model.
REFERENCES CITED

Faye, J.-P., and J.-P. Jeannot, 1986, Prestack migration velocity analysis from focusing depth imaging: Presented at the 56th Annual International Meeting, SEG.

Hatchell, P. J., and S. J. Bourne, 2005, Measuring reservoir compaction using time-lapse timeshifts: Presented at the 75th Annual International Meeting, SEG.

Kelly, S., J. R. Martinez, B. Tsimelzon, and S. Crawley, 2010, A comparison of inversion results for two full-waveform methods that utilize the lowest frequencies in dual-sensor recordings: Presented at the 80th Annual International Meeting, SEG.

———, 2012b, Wavefield tomography based on local image correlation: 74th Conference and Exhibition, EAGE, Extended Abstracts.

Sava, P., and I. Vasconcelos, 2009, Extended common-image-point gathers for wave-equation migration: Presented at the 71st Conference and Exhibition, EAGE.

Shragge, J. C., and D. E. Lumley, 2012, 4D seismic wave-equation depth migration velocity analysis: Presented at the 74th Conference and Exhibition, EAGE.

Shragge, J. C., T. Yang, and P. Sava, 2012, Time-lapse image-domain velocity analysis using adjoint-state methods: Presented at the 82nd Annual International Meeting, SEG.

Vogel, C., 2002, Computational methods for inverse problems: SIAM.

Xu, S., D. Wang, F. Chen, and Y. Zhang, 2012b, Full waveform inversion for reflected seismic data: Presented at the 74th Conference and Exhibition, EAGE.

——–, 2011a, Image-domain waveform tomography with two-way wave-equation: Presented at the 81th Annual International Meeting, SEG.

——–, 2012, Illumination compensation for image-domain wavefield tomography: Presented at the 74th Conference and Exhibition, EAGE.

Yilmaz, O., 2001, Seismic data processing: SEG.

Our objective function is defined as
\[
J(m) = \frac{1}{2} \sum_i \| r_i(x) \|_x^2 = \frac{1}{2} \sum_i \left\| \int P(x, \lambda) c_i(x, \lambda) d\lambda \right\|_x^2,
\]
where \(c_i(x, \lambda) = \int w(x - \xi) R_{i+1}(\xi - \frac{1}{2}) R_i(\xi + \frac{1}{2}) d\xi \) is the local correlation of two images from the nearby shots \(i \) and \((i + 1) \), and \(P(x, \lambda) \) is an operator that annihilates the local correlation panel along the direction of the structure at every point in the image.

The adjoint-state method computes the gradient of the objective function with respect to the model parameters by solving two forward problems for each state variable of the system. This procedure turns out to be extremely computationally efficient since it avoids perturbing each model parameter and computing the resulting state variable perturbation (Lions, 1972; Plessix, 2006). The solution of the auxiliary forward problem requires different sources (adjoint sources) that are computed by differentiating the objective function with respect to the state variables.

We now derive the mathematical expression for the source and receiver adjoint sources. The computation of the derivative of a functional with respect to a function requires the definition of an inner product in the appropriate functional space; moreover, it requires the concept of the Frechét differential (Vogel, 2002).

Let us denote the state variables of the problem, i.e., the source and receiver wavefields for the \(i \)th shot, by \(u_{s,i} \) and \(u_{r,i} \), respectively. We derive the expression of the adjoint source for the source wavefield. The derivation and expression of the adjoint source for the receiver wavefield are analogous. First, we make explicit the dependency of the residual \(r_i(x) \) (and
thus of the objective function J) on the state variable:

$$
 r_i(x) = \int P(x, \lambda) w(x - \xi) u_{s,i} \left(\xi - \frac{\lambda}{2}, t \right) \cdot \cdot u_{r,i} \left(\xi - \frac{\lambda}{2}, t \right) R_{i+1} \left(\xi + \frac{\lambda}{2} \right) dV, \\
 \tag{A.2}
$$

where the integral is a triple integral over the volume element $dV = dtd\xi d\lambda$. Second, we compute the Frechét differential of the objective function $J(m)$ with respect to an arbitrary perturbation of the state variable $\delta u_{s,i}$. The objective function in equation A.1 is the sum over shots of energy of the residues in equation A.2 over the spatial domain. In order to simplify the derivation, we first write the differential of the objective function as a function of the differential of the residual using perturbation theory:

$$
 J[u_{s,i}] + \delta J[u_{s,i}, \delta u_{s,i}] = \frac{1}{2} \int \left(r_{i-1} + \delta r_{i-1}[u_{s,i}, \delta u_{s,i}] \right)^2 \\
 + \left(r_i + \delta r_i[u_{s,i}, \delta u_{s,i}] \right)^2 dx. \\
 \tag{A.3}
$$

Expanding the squares in equation A.3 and considering only the terms that are linear in the wavefield perturbation, we obtain an expression for the Frechét differential of the objective function:

$$
 \delta J[u_{s,i}, \delta u_{s,i}] = \int r_{i-1} \delta r_{i-1}[u_{s,i}, \delta u_{s,i}] + r_i \delta r_i[u_{s,i}, \delta u_{s,i}] dx. \\
 \tag{A.4}
$$

The square brackets in equation A.4 indicate the double dependency of the Frechét differential on the state variable and its arbitrary perturbation. The Frechét differential can be expressed as the inner product between the Frechét derivative $\nabla_{u_{s,i}} J$ of the objective function with respect to the state variable $u_{s,i}$ and the arbitrary perturbation $\delta u_{s,i}$:

$$
 \delta J = \langle \nabla_{u_{s,i}} J, \delta u_{s,i} \rangle. \\
 \tag{A.5}
$$

Our goal is then to express the Frechét differential as an operator applied to the arbitrary perturbation of the state variable; that operator is the Frechét derivative.
Let us derive the expression of the Frechét differential of the residual with respect to the state variable \(\delta r_i[u_{s,i}, \delta u_{s,i}] \) and plug it in the expression of the Frechét differential of the objective function. Assuming \(r_i(x) \) is Frechét differentiable, we compute the Frechét differential using the limit of the incremental ratio:

\[
\delta r_i[u_{s,i}, \delta u_{s,i}] = \lim_{h \to 0} \frac{r_i[u_{s,i} + h\delta u_{s,i}] - r_i[u_{s,i}]}{h},
\]

where \(h \) is a scalar, and \(\delta u_{s,i} \) is an arbitrary perturbation of the state variable \(u_{s,i} \) and belongs to the same functional space. The residual \(r_i \) is a linear functional of \(u_{s,i} \), and computing the limit in equation (A.6) we obtain

\[
\delta r_i[u_{s,i}, \delta u_{s,i}] = \int P(x, \lambda) w(x - \xi) \delta u_{s,i} \left(\xi - \frac{\lambda}{2}, t \right)
\cdot u_{r,i} \left(\xi - \frac{\lambda}{2}, t \right) R_{i+1} \left(\xi + \frac{\lambda}{2} \right) dV.
\]

The expression for \(\delta r_{i-1}[u_{s,i}, \delta u_{s,i}] \) is analogous and can be derived using the same procedure.

We want to express equation (A.7) as an inner product between an operator (the Frechét derivative \(\nabla_{u_{s,i}} r_i \)) and the state variable perturbation \(\delta u_{s,i} \); we perform a change of variables to make the perturbation of the state variable \(\delta u_{s,i} \) depend only on a single independent variable. We define two new variables \(\eta = \xi - \frac{\lambda}{2} \) and \(\chi = \lambda \); the Jacobian of this transformation is trivial and equal to 1; then, in the new coordinate system, we have

\[
\delta r_i = \int P(x, \chi) w(x - \eta - \frac{\chi}{2}) \delta u_{s,i} \left(\eta, t \right)
\cdot u_{r,i} \left(\eta, t \right) R_j \left(\eta + \chi \right) dV',
\]

where the triple integral is over the new volume element \(dV' = dtd\eta d\chi \). We can formally write the Frechét differential as the inner product between the Frechét derivative (gradient) of the residual \(r_i \) with respect to the state variable \(u_{s,i} \) and the arbitrary perturbation \(\delta u_{s,i} \):

\[
\delta r_i = \langle \nabla_{u_{s,i}} r_i, \delta u_{s,i} \rangle,
\]
where the inner product is over the domain of the perturbation \((\eta, t)\). From equation A.9 and A.8, the expression of \(\nabla u_{s,i} r_i\) follows:

\[
\nabla u_{s,i} r_i = \int \mathcal{P}(x, \chi) w \left(x - \eta - \frac{\chi}{2} \right) u_r,i(\eta, t) R_j(\eta + \chi) \, d\chi. \tag{A.10}
\]

We can now substitute the expression for \(\delta r_i\) and \(\delta r_{i-1}\) in the equation for \(\delta J\):

\[
\delta J[u_{s,i}, \delta u_{s,i}] = \int r_{i-1}(x) \nabla u_{s,i} r_{i-1} \delta u_{s,i}[u_{s,i}, \delta u_{s,i}] \, dx dt + \int r_i(x) \nabla u_{s,i} r_i \delta u_{s,i}[u_{s,i}, \delta u_{s,i}] \, dx dt. \tag{A.11}
\]

By combining equation A.11, A.10, and A.5, we can isolate the expression of the Fréchet derivative of the objective function \(J\) with respect to the state variable \(u_{s,i}\):

\[
\nabla u_{s,i} J = u_r,i(\eta, t) \left[r_{i-1}\mathcal{P}(x, \lambda) * R_{i-1}(x) + r_i\mathcal{P}(x, \lambda) * R_{i+1}(x) \right], \tag{A.12}
\]

where

\[
\mathcal{P}(x, \lambda) * R_{i-1}(x) = \int w \left(x - \eta + \frac{\chi}{2} \right) \cdot \mathcal{P}(x, \chi) R_{i-1}(\eta - \chi) \, d\chi \tag{A.13}
\]

and

\[
\mathcal{P}(x, \lambda) * R_{i+1}(x) = \int w \left(x - \eta - \frac{\chi}{2} \right) \cdot \mathcal{P}(x, \chi) R_{i+1}(\eta + \chi) \, d\chi \tag{A.14}
\]

are the local convolution and local correlation of the penalty operator with the image over the local window \(w\), respectively. The derivation for the receiver-side adjoint source is totally analogous and leads to the formula

\[
\nabla u_{r,i} J = u_{s,i}(\eta, t) \left[r_{i-1}\mathcal{P}(x, \lambda) * R_{i-1}(x) + r_i\mathcal{P}(x, \lambda) * R_{i+1}(x) \right]. \tag{A.15}
\]

Equations A.12 and A.15 are the expressions for the adjoint sources in equations 3.11 and 3.12 in the 3.3.3.
APPENDIX B - DIRECT ADJOINT-STATE CALCULATIONS FOR VECTOR DISPLACEMENTS

In this appendix, I show the adjoint-state calculations for the objective function in equation 5.2. For the sake of simplicity, I assume there is a single pair shots $R_i(x)$ and $R_{i+1}(x)$. To facilitate the understanding and help the reader, I use a notation borrowed from Fichtner et al. (2006), who show the rationale at the base of the adjoint-state method and how the adjoint wavefields are actually derived.

Let us rewrite the objective function as an inner product:

$$J_{WARP}(m) = \frac{1}{2} \int (\nabla R_i \cdot u)^2 d\mathbf{x} = \frac{1}{2} \langle 1, f (\nabla R_i, u) \rangle,$$

(B.1)

where $f (\nabla R_i, u) = (\nabla R_i \cdot u)^2$, the angle brackets indicate integration over space, and $m(x)$ represents the model parameter function. The dependence of the objective function from the source and receiver wavefields, $u_{si}(x,t)$ and $u_{ri}(x,t)$ is implicit in the migrated image R_i and in the displacement field $u(x)$ that warps R_i into R_{i+1}.

We can write the gradient of the objective function in equation B.1 as follows:

$$D_m J_{WARP} = \partial_{u_{si}} J_{WARP} D_m u_{si} + \partial_{u_{ri}} J_{WARP} D_m u_{ri} = \langle 1, \partial_{u_{si}} f D_m u_{si} \rangle + \langle 1, \partial_{u_{ri}} f D_m u_{ri} \rangle,$$

(B.2)

where $\partial_{u_{si}}$ and $\partial_{u_{ri}}$ are the Fréchet derivatives with respect to the state variables, i.e. the source and receiver wavefields; D_m represents the total derivative with respect to the model parameters. As Fichtner et al. (2006) point out, the computation of $D_m u_{si}$ and $D_m u_{si}$ is too expensive to be done using finite difference techniques; instead, the adjoint-state method allows us to avoid the computation of the Fréchet derivatives of the wavefields with respect to the model by computing ad-hoc wavefields that satisfy the same boundary conditions.
of the initial problem, have a terminal instead of an initial condition, and have a different source term, which can be calculated as the derivative of the objective function with respect to the background wavefields, \(\partial_{u_{si}}f \) and \(\partial_{u_{ri}}f \).

Differently from other data- or image-domain tomography algorithms, \(f(\nabla R_i, u) \) depends on a very nonlinear and nondifferentiable function of the wavefields: the displacement vector \(u \). I use an implicit function (Luo and Schuster, 1991) to link the vector \(u \) to the background wavefields. Once I have defined the implicit function, I can use implicit differentiation to obtain the derivative of the displacement with respect to the state variables.

Let us consider the first term in equation B.2, which depends on the source wavefield \(u_{si} \) only. Using the chain rule of differentiation, we have

\[
\partial_{u_{si}}f = \partial_{\nabla R_i}f \partial_{u_{si}}\nabla R_i + \partial_u f \partial_{u_{si}}u; \tag{B.3}
\]

The first term is easy to compute since the function \(f \) is a quadratic function of the image gradient, the \(\nabla \) operator is linear, and the image \(R_i \) is a linear functional of the source wavefield \(u_{si} \). Straightforward calculations give

\[
\partial_{\nabla R_i}f \partial_{u_{si}}\nabla R_i = (\nabla R_i \cdot u) \cdot \nabla u_{ri}. \tag{B.4}
\]

In the second term in equation B.2, \(\partial_u f \partial_{u_{si}}u \), the derivative of \(f(\nabla R_i, u) \) with respect to the displacement vector \(u \) is easy to compute because of the quadratic dependence of the objective function on \(u \). Simple calculations give

\[
\partial_u f \partial_{u_{si}}u = (\nabla R_i \cdot u) \nabla R_i \cdot \partial_{u_{si}}u. \tag{B.5}
\]

On the contrary, the derivative of the displacement vector \(u \) with respect to the state variable cannot be directly derived or computed. The displacement vector is defined as the maximum argument of local image correlations (equation 5.4). Since the maximum is a stationary point, the gradient of the local correlation at \(\lambda = u \) must vanish. In order to compute the derivative with respect to the state variables, we use the following implicit definition

\[
u \mid F(x, \lambda = u) = \nabla_{\lambda} \int w(x - \xi) R_i(\xi + \lambda) R_{i+1} d\xi \bigg|_{\lambda=u} = 0. \tag{B.6}\]
We can implicitly differentiate the function $F F(x, \lambda = u)$ with respect to u and the state variable u_{si} to obtain an expression for the derivative $\partial_{u_{si}} u$ in equation B.3.

The implicit function $F(x, u) = 0$ depends on the background wavefield u_{si} via the migrated image R_i; by writing the differential with respect to u_{si} and u

$$\partial_{u_{si}} F du_{si} + \partial_u F du = 0$$

we can derive an expression for the variation of the displacement vector u with respect to the wavefields u_{si}

$$\partial_{u_{si}} u = -(\partial_u F)^{-1} \partial_{u_{si}} F$$

(B.8)
given that $\partial_u F$ is not singular.

The computation of $\partial_{u_{si}} F$ is relatively straightforward since F depends only on linear functionals of the migrated image R_i. The derivative $\partial_u F$ is the multidimensional generalization of the denominator in equation (7a) in Luo and Schuster (1991):

$$\partial_u F = \int \nabla_u \nabla_\lambda R_i (\xi + u) R_{i+1} (\xi) d\xi,$$

where, in $2D$,

$$\nabla_u \nabla_\lambda R_i (\xi + u) = \begin{bmatrix} \frac{\partial^2 R_i(\xi+u)}{\partial z^2} & \frac{\partial^2 R_i(\xi+u)}{\partial x \partial z} \\ \frac{\partial^2 R_i(\xi+u)}{\partial x \partial z} & \frac{\partial^2 R_i(\xi+u)}{\partial z^2} \end{bmatrix}$$

(B.10)
is a 2×2 tensor of second derivatives. I kept the subscripts λ and u to remember the reader where those gradients come from. Both λ and u are spatial vectors and thus the gradient with respect to them is identical to the spatial gradient of the image with respect to the spatial coordinate vector x. Notice that since $(\partial_u F)^{-1}$ is a 2×2 matrix-valued function defined at every image point x, and $\partial_{u_{si}} F$ is a 2×1 vector-valued function at every point x, their product is a 2×1 vector-valued function, and then the dot product with the spatial image gradient ∇R_i in equation B.5 makes mathematical sense. The generalization to 3D is straightforward. This expression is similar to equations (6) and (7a) in Luo and Schuster (1991).
The analysis of the differential of objective function in equation 5.2 with respect to the model parameters shows the mathematical complexity of implementing this solution for velocity analysis. Especially the multidimensional generalization of the procedure developed in Luo and Schuster (1991) poses a number of implementation challenges: in the time domain, we have one-dimensional shifts and equation (7a) in Luo and Schuster (1991) involves scalar functions. Moreover, Luo and Schuster (1991) focus only on transmitted waves and thus measure a single scalar-valued traveltime error $\Delta \tau$. Ma and Hale (2013) generalize the traveltime inversion approach to reflections by using dynamic-image warping but still deal with scalar-valued traveltime error functions. In the image domain, the shifts are vectors and we have to deal with vector and matrix-valued functions, which considerably increases the complexity of the gradient computation. The local correlation implementation increases the dimensionality of the problem and then the cost, and picking of specific location in the image is necessary for an efficient implementation.
APPENDIX C - PERMISSION TO INCLUDE CO-AUTHORED MATERIAL

In this appendix, I include a copy of the emails exchanged between myself and my co-authors, who grant permission to include the papers submitted for publication in the dissertation. Chapter 2 is co-authored by Clara Andreoletti and Nicola Bienati from eni E&P. Chapter 3 is co-authored by Jacopo Panizzardi from eni E&P.

C.1 Request of Permission

Francesco <fperrone@mymail.mines.edu> Mon, Oct 7, 2013 at 11:25 AM
To: Panizzardi Jacopo <Jacopo.Panizzardi@eni.com>,
 Bienati Nicola <Nicola.Bienati@eni.com>,
 Andreoletti Clara <Clara.Andreoletti@eni.com>
Cc: Paul Sava <psava@mines.edu>

Dear all,

since two chapters of my thesis are co-authored papers,
I must require permission from the co-authors to include them in my thesis.

It can simply be given by replying to this email
and granting me permission to include the papers in the thesis.

Regards,

Francesco

--

Francesco Perrone
PhD Candidate
C.2 Permission by Nicola Bienati, Eni E&P

Bienati Nicola <Nicola.Bienati@eni.com> Fri, Oct 11, 2013 at 7:37 AM
To: Francesco <fperrone@mymail.mines.edu>
Cc: Paul Sava <psava@mines.edu>, Panizzardi Jacopo <Jacopo.Panizzardi@eni.com>, Andreoletti Clara <Clara.Aンドreoletti@eni.com>

Francesco,

for me its ok.

Ciao,

Nicola

C.3 Permission by Clara Andreoletti, Eni E&P

Andreoletti Clara <Clara.ANDreoletti@eni.com> Fri, Oct 11, 2013 at 8:14AM
To: Panizzardi Jacopo <Jacopo.Panizzardi@eni.com>, Francesco <fperrone@mymail.mines.edu>, Bienati Nicola <Nicola.Bienati@eni.com>
Cc: Paul Sava <psava@mines.edu>

Ok for me too

Bye

Clara
C.4 Permission by Jacopo Panizzardi, Eni E&P

Panizzardi Jacopo <Jacopo.Panizzardi@eni.com> Fri, Oct 11, 2013 at 7:57 AM
To: Francesco <fperrone@mymail.mines.edu>,
 Bienati Nicola <Nicola.Bienati@eni.com>,
 Andreoletti Clara <Clara.Andreoletti@eni.com>
Cc: Paul Sava <psava@mines.edu>

Hello Francesco,

you can proceed!

jacopo