Automatically tying well logs to seismic data

Andrew Munoz* and Dave Hale
Center for Wave Phenomena
Colorado School of Mines
data provided by Rocky Mountain Oilfield Testing Center
data provided by Rocky Mountain Oilfield Testing Center
Artificial example

Sample index i

$f(t_i)$ artificial seismic trace

$g(\tau_j)$ artificial synthetic seismogram
Alignment errors: $e(t_i, \tau_j) = [f(t_i) - g(\tau_j)]^2$
Accumulated errors: $d(t_i, \tau_j)$
Minimum accumulated error

Sample index j

Sample index i

$d(t_i, T_j)$
Optimal alignment path

$d(t_i, T_j)$
\(g(\tau_j) \rightarrow \tilde{g}(\tau_i) \)

Sample index \(i \)

- \(f(t_i) \) artificial seismic trace
- \(g(\tau_j) \) artificial synthetic seismogram
- \(\tilde{g}(\tau_i) \) artificial aligned synthetic seismogram
Teapot Dome example

\[f(t_i) \] seismic trace

\[g(\tau_j) \] synthetic seismogram
Alignment errors: \(e(t_i, \tau_j) = [f(t_i) - g(\tau_j)]^2 \)
Accumulated errors: $d(t_i, \tau_j)$
Optimal alignment path

Synthetic time τ (s)

Trace time t (s)

$d(t_i, T_j)$
$g(\tau_j) \rightarrow \tilde{g}(\tau_i)$

- $f(t_i)$ seismic trace
- $g(\tau_j)$ synthetic seismogram
- $\tilde{g}(\tau_i)$ aligned synthetic seismogram
\(g(\tau_j) \rightarrow \tilde{g}(\tau_i) \)

- \(f(t_i) \) seismic trace
- \(g(\tau_j) \) synthetic seismogram
- \(\tilde{g}(\tau_i) \) aligned synthetic seismogram
\[\tilde{T}_z \text{ time-depth from alignment} \]
\[T_z \text{ time-depth from velocity log} \]
Using \tilde{T}_z

Distance (km)

3 3.5 4 4.5

Time (s)

0.4 0.6 0.8 1 1.2 1.4 1.6

formation tops in well
Using \tilde{T}_z

formation tops in well
\(\tilde{\tau}_z \) time-depth from alignment

\(\tau_z \) time-depth from velocity log
Future work

better constrain alignment path

new interval velocity curve

better estimation of synthetics

deviated wells, dip, faults

multiple wells
Thank you

C-Team: Farhad, Luming, Simon, Yong

CWP Faculty and Staff

CWP Sponsors

Rocky Mountain Oilfield Testing Center
Using \tilde{T}_z