Newton-Marchenko-Rose Imaging: Image reconstruction based on inverse scattering theory

Jyoti Behura†, Kees Wapenaar‡, & Roel Snieder†

†Colorado School of Mines
‡Delft Univ. of Tech.
Ideal RTM
RTM with internal multiples

Behura et al. (CSM,Delft)
Change the experiment...
Change the experiment...
Anti-causal and causal Green’s functions

\[G^- \quad \text{incoming} \]

\[G^+ \quad \text{outgoing} \]
Focus-point not on reflector $\rightarrow g^- \neq g^+$

g^- incoming

g^+ outgoing
Focus-point on reflector $\rightarrow \mathcal{G}^- = \mathcal{G}^+$

G^- incoming

G^+ outgoing
NMRI algorithm

```
for any x,y,z in image space do
    build wavefields (Newton,Marchenko,Rose)
    compute \( G^- \) and \( G^+ \) (Wapenaar)
    apply imaging condition on \( G^- \) and \( G^+ \)
end for
```
Data/information used in NMRI

- surface reflection data
- direct arrivals (background velocity model)
- source signature
NMRI = obtain image from g^- and g^+
Layer-cake model

![Layer-cake model diagram](image-url)
Layer-cake model
G^- and G^+ at $z = 500\text{m}$
G^- and G^+ at $z = 660m$
...and the image
Velocity used in imaging

![Velocity Field](image_url)
...and the image
Shot gather

Behura et al. (CSM, Delft)

NMRI
...and the image
Is NMRI worth it?
Limitations

- **computational cost:**
 - high if disk-space limited
 - low if large disk-space
 - low if ray-tracing used

- **number of iterations:**
 - small if multiple scattering is weak
 - large for strong multiple scattering
Advantages over RTM

- multiples imaged
- illumination compensation (potentially)
- targeted imaging
- computationally cheap (potentially)
- all frequencies imaged
- efficient anisotropy imaging
- highly parallelizable
Image after 1 iteration
Contribution of internal multiples

Behura et al. (CSM,Delft)
Advantages over RTM

- multiples imaged
- illumination compensation (potentially)
- targeted imaging
- computationally cheap (potentially)
- all frequencies imaged
- efficient anisotropy imaging
- highly parallelizable
Image with illumination compensation
Advantages over RTM

- multiples imaged
- illumination compensation (potentially)
- targeted imaging
- computationally cheap (potentially)
- all frequencies imaged
- efficient anisotropy imaging
- highly parallelizable
Lena’s right eye
Advantages over RTM

- multiples imaged
- illumination compensation (potentially)
- targeted imaging
- computationally cheap (potentially)
- all frequencies imaged
- efficient anisotropy imaging
- highly parallelizable
Advantages over RTM

- multiples imaged
- illumination compensation (potentially)
- targeted imaging
- computationally cheap (potentially)
- all frequencies imaged
- efficient anisotropy imaging
- highly parallelizable
Advantages over RTM

- multiples imaged
- illumination compensation (potentially)
- targeted imaging
- computationally cheap (potentially)
- all frequencies imaged
- efficient anisotropy imaging
- highly parallelizable
Advantages over RTM

- multiples imaged
- illumination compensation (potentially)
- targeted imaging
- computationally cheap (potentially)
- all frequencies imaged
- efficient anisotropy imaging
- highly parallelizable
Acknowledgments

- freeDDS (http://www.freeusp.org/DDS)
- Francesco Perrone
- Farnoush Forghani
- Filippo Broggini
- Clement Fleury
- CWP sponsors
Backup slides
NMRI algorithm

for any x,y,z in image space do
 Compute first arrivals u^{i_0}
 Initialize: $u^{i_1}_{1,2} \leftarrow u^{i_0}$, $u^{r}_{1,2} \leftarrow 0$
repeat
 Mute $u^{r}_{1,2}$ beyond first arrivals
 Update incident wavefield:
 \[u^{i_1} \leftarrow u^{i_0} - u^{r,-t}_{1}, \quad u^{i_2} \leftarrow u^{i_0} + u^{r,-t}_{2} \]
 Update reflected wavefield:
 \[u^{r}_{1} \leftarrow u^{i}_{1} \ast R, \quad u^{r}_{2} \leftarrow u^{i}_{2} \ast R \]
until $u^{r}_{1,2}$ converge
 \[g^{+} + g^{-} = u^{r}_{1} + u^{i,-t}_{1} \]
 \[g^{+} - g^{-} = u^{r}_{2} - u^{i,-t}_{2} \]
i.c. on g^{-} and g^{+}
end for
...after low-cut filter