Kirchhoff modeling for attenuative anisotropic media
Bharath Shekar & Ilya Tsvankin, Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401

SUMMARY

Seismic wave propagation in attenuative media can be efficiently modeled with ray-based methods. Here, we present a methodology to generate reflection data from attenuative anisotropic media using the Kirchhoff scattering integral and summation of Gaussian beams. Green’s functions are computed in the reference elastic model by Gaussian-beam summation, and the influence of attenuation is incorporated as a perturbation along the central ray. The reflected wavefield is obtained by substituting the approximate Green’s functions into the Kirchhoff scattering integral. Numerical examples for P-waves in transversely isotropic (TI) media with a horizontal reflector demonstrate the accuracy of the method.

INTRODUCTION

Attenuation analysis can provide seismic attributes sensitive to the physical properties of the subsurface. Reliable attenuation measurements have become feasible with acquisition of high-quality reflection and borehole data. A prerequisite for estimating attenuation coefficients from seismic data is accurate and efficient modeling of wave propagation in attenuative media. The reflectivity method (e.g., Schmidt and Tango, 1986) can be used to calculate exact synthetic seismograms in 1D attenuative media. However, it is restricted to laterally homogeneous models with flat interfaces. Finite-difference modeling of seismic wave propagation in attenuative media is time consuming (Carcione, 2011).

A computationally efficient alternative is ray tracing, which can generate asymptotic Green’s functions in both elastic and attenuative models (Červený, 2001). Ray tracing in the presence of attenuation can be performed using perturbation methods, which involve computation of rays in a reference elastic medium with the influence of attenuation included as a perturbation along the ray (Gajewski and Pšenčík, 1992; Červený and Pšenčík, 2009; Shekar and Tsvankin, 2012).

Synthetic seismograms of reflected waves in heterogeneous media can be computed using the Kirchhoff scattering integral (Chapman, 2004). However, this method typically requires two-point ray tracing, which does not properly describe multivalued traveltimes (multipathing). Alternatively, the asymptotic Green’s functions required in the Kirchhoff scattering integral can be generated by summation of Gaussian beams (Bleistein, 2008; Červený, 2001). Gaussian-beam summation can accurately handle multipathing and produce finite-frequency sensitivity kernels for amplitude inversion (Yomogida and Aki, 1987).

Here, we present an algorithm for computing 2.5D ray synthetic seismograms from attenuative anisotropic media. First, we describe the Kirchhoff scattering integral for purely elastic models and show how it should be modified in the presence of attenuation. Then we review the method of summation of Gaussian beams and its application to computation of the asymptotic “two-point” Green’s functions in attenuative media. Finally, this methodology is implemented for 1D media and its accuracy is illustrated with numerical examples.

METHODOLOGY

Kirchhoff scattering integral

For simplicity, here we describe the computation of synthetic seismograms for a single reflecting interface. Our treatment is restricted to P-waves and does not include P-to-S mode conversions. The sources and receivers are assumed to be distributed on the same surface, which lies above the reflector. Suppose the wavefield is excited by a point force located at \(x_s \) and aligned with the \(x_3 \)-axis, and the receiver is located at \(x_r \). The \(n \)th component of the displacement field in the frequency domain is given by (Červený, 2001):

\[
G_{nk}(x_s, x_r, \omega) = \sqrt{2\pi} \int_{\Sigma} \mathbb{G}_{nl}^{(3)}(\chi^{\prime})
\times G_{in}(x^{\prime}, x_r, \omega) G_{jk}[x^{\prime}, \omega] d\Sigma,
\]

where \(x^{\prime} \) are points on the scattering surface \(\Sigma \), and the source- and receiver-side Green’s functions, \(G_{in}(x^{\prime}, x_r, \omega) \) and \(G_{jk}(x^{\prime}, x_r, \omega) \), are computed for a smoothed medium. The weighting function \(\mathbb{G}_{nl}^{(3)} \) is represented as:

\[
\mathbb{G}_{nl}^{(3)} = a_{ijkl}^{(1)} (n_i p'_j - n_j p'_i) (1 + R),
\]

where \(a_{ijkl}^{(1)} \) is the local density-normalized stiffness tensor in the medium above the reflector, \(n_j \) is the normal to the reflector, \(p' \) and \(p'' \) are the source- and receiver-side slowness vectors (respectively) at the scattering point, and \(R \) is the PP-wave reflection coefficient.

Equation 1 is valid for an arbitrary scattering surface, and all Green’s functions have to be computed in 3D. However, if the medium properties do not vary in the \(x_2 \)-direction, and the plane \([x_1, x_3]\) is a plane of symmetry, equation 1 can be represented in a 2.5D form. Then the surface integral in equation 1 can be reduced to a line integral by the method of stationary phase (Bleistein, 1984).

Here, we use the results of Bleistein (1986), who evaluates an integral similar to that in equation 1 by the stationary-phase method. The 2.5D version of equation 1 can be obtained as:

\[
G_{nk}(x_s, x_r, \omega) = \int_{C, x_2=0} \frac{1}{\sigma} \mathbb{G}_{nl}^{(3)}(\chi^{\prime})
\times G_{in}(x^{\prime}, x_r, \omega) G_{jk}(x^{\prime}, x_r, \omega) d\tau,
\]

where the Green’s functions are defined in 2.5D, the scatterer is reduced to the curve \(C \) that lies in the \([x_1, x_3]\)-plane, \(d\tau \) is
Kirchhoff modeling

an elementary arc-length along \(C \), and function \(\sigma \) accounts for out-of-plane phenomena:

\[
\sigma = \left[\frac{\partial^2 T(x', x_s)}{\partial x_s^2} + \frac{\partial^2 T(x', x_r)}{\partial x_r^2} \right]_{x_r=0};
\]

\(T(x', x_s) \) is the traveltime from the scatterer to the source and \(T(x', x_r) \) is the traveltime from the scatterer to the receiver. The second-order spatial derivatives of the traveltime functions may be calculated from dynamic ray tracing.

Equations 1-4 can be extended to attenuative media by making the stiffness tensor complex and replacing the elastic Green’s functions with their viscoelastic counterparts. Although the reflection coefficient and slowness vector also become complex in attenuative media, we compute these quantities for the reference elastic medium. With the exception of anomalously high attenuation, plane-wave reflection coefficients are not significantly distorted by attenuation (Behura and Tsvankin, 2009). While the complex-valued slowness vectors at the reflector can somewhat alter the weighting function defined in equation 2, they do not significantly contribute to the displacement computed from equation 3 because attenuation is mostly a propagation phenomenon.

Asymptotic Green’s function as a sum of Gaussian beams

Although the Green’s functions in equation 3 can be computed by two-point ray tracing (Bulant, 1996), that method cannot accurately handle multipathing. A more rigorous approach to modeling asymptotic Green’s functions involves summation of Gaussian beams (Červený, 2001). Here, we start with the computation of 2.5D elastic Green’s functions and then describe the modifications needed for extending the methodology to attenuative media.

The Green’s function \(G(x', x_s, \omega) \) can be found as the following sum of Gaussian beams (Červený, 2001):

\[
G(x', x_s, \omega) = \int \Phi(\gamma) u_{GB}(R_0(\gamma)) \, d\gamma,
\]

where \(u_{GB}(R_0(\gamma)) \) represents a single Gaussian beam concentrated around a central ray \(R_0(\gamma) \), \(\Phi(\gamma) \) is a weighting function, and \(\gamma \) is an initial value of a certain ray parameter (e.g., of the phase angle). Suppose that the ray \(R_0(\gamma_0^0) \) illuminates a point close to \(x' \). The range of integration is then chosen to be symmetric over \(\gamma_0^0 \), and the Green’s function is obtained by summation over a fan of beams that originate at the source location \(x_s \) and illuminate a region around \(x' \). Explicit expressions for \(u_{GB}(R_0(\gamma)) \) and \(\Phi(\gamma) \) can be found in Červený (2001).

In attenuative media, equation 5 can be modified to obtain the viscoelastic Green’s function \(G^{\text{att}}(x', x_s, \omega) \) (Červený, 1985):

\[
G^{\text{att}}(x', x_s, \omega) = \int \Phi(\gamma) u^{\text{att}}_{GB}(R_0(\gamma)) \, d\gamma.
\]

The weighting function \(\Phi(\gamma) \) remains unchanged from that in elastic media, whereas the Gaussian-beam displacement \(u^{\text{att}}_{GB}(R_0) \) becomes

\[
u^{\text{att}}_{GB}(R_0(\gamma)) = u_{GB}(R_0(\gamma)) e^{-\omega t'(x', x_s)},
\]

where \(u_{GB}(R_0(\gamma)) \) is the Gaussian beam computed for the reference elastic medium. The real-valued quantity \(t'(x', x_s) \), called the “dissipation factor” (Gajewski and Pšenčík, 1992), accounts for the attenuation-induced amplitude decay along the central ray. The dissipation factor can be calculated using perturbation methods (Červený and Pšenčík, 2009; Shekar and Tsvankin, 2012).

Implementation

The reflected wavefields in attenuative heterogeneous media are calculated using equation 3 with the source-to-scatterer and scatterer-to-receiver Green’s functions obtained from equation 6. The Gaussian beams (equation 7) are computed in the reference elastic medium with the dissipation factor found as a perturbation along the central ray (Červený and Pšenčík, 2009; Shekar and Tsvankin, 2012). The weighting function \(\Phi(\gamma) \) for the summation of Gaussian beams is also calculated in the reference elastic medium. Likewise, the weighting functions \(\sigma \) and \(\omega \) for the Kirchhoff integral (equation 3) are found from the quantities stored during the modeling of Gaussian beams in the elastic background. For TI models, the reflection coefficient \(R \) in equation 2 is obtained from the weak-contrast, weak-anisotropy approximation presented by Rüger (1997).

The outlined method involves a number of approximations. The Kirchhoff scattering integral itself is an asymptotic solution that ignores multiple scattering (Chapman, 2004). The method of summation of Gaussian beams is limited to computing asymptotic Green’s functions in smooth media. The influence of attenuation is modeled using perturbation theory, which is valid for weakly-to-moderately dissipative media. Numerical examples illustrating the accuracy of the perturbation approach can be found in Shekar and Tsvankin (2012).

NUMERICAL EXAMPLES

First, we verify the accuracy of the Gaussian beam summation method in constructing the asymptotic Green’s function. Figure 1 compares the displacements computed from perturbation ray theory (\(U_{\text{ART}} \)) and Gaussian beam summation (\(U_{\text{GB}} \)) for a homogeneous VTI model. Even though the medium is strongly dissipative with the \(P \)- and \(S \)-wave vertical quality factors equal to 10, perturbation theory is sufficiently accurate (Shekar and Tsvankin, 2012), and the two displacements are close to one another.

Next, we test the accuracy of the Kirchhoff scattering integral combined with the Gaussian beam summation method in generating reflection data. Table 1 displays the velocity and attenuation parameters for a laterally homogeneous VTI medium above a horizontal reflector. The exact reflected wavefield (Figure 2a) was generated using the reflectivity method (Mallick and Frazer, 1990). The data computed by the Kirchhoff scattering integral (Figure 2b) have a similar amplitude but lower frequency content than the seismograms in Figure 2a because the Gaussian beam summation method yields finite-frequency Green’s functions. The Kirchhoff scattering integral also produces spurious events near both ends of the receiver array, so these traces have been muted out.
Kirchhoff modeling

Figure 1: Comparison of the vertical displacement component computed using perturbation ray theory (U_{ART}, red line) and Gaussian-beam summation method (U_{GB}, black line) for group angles with the vertical of (a) 0°, (b) 30°, (c) 60°, and (d) 90°. The model is homogeneous VTI with the P-wave vertical velocity $V_{\text{P0}} = 2.0$ km/s, S-wave vertical velocity $V_{\text{S0}} = 1.0$ km/s, and anisotropy parameters $\epsilon = 0.4$ and $\delta = 0.25$. The P-wave vertical quality factor is $Q_{\text{P0}} = 10$, S-wave vertical quality factor $Q_{\text{S0}} = 10$, and the attenuation-anisotropy parameters (defined in Zhu and Tsvankin, 2006) are $\epsilon_\varphi = -0.45$ and $\delta_\varphi = -0.50$. The wavefield is excited by a vertical point force; the source signal is a Ricker wavelet with a central frequency of 10 Hz.
Kirchhoff modeling

Figure 2: Vertical displacement for the model in Table 1 generated using (a) the reflectivity method and (b) the Kirchhoff scattering integral. The wavefield is excited and recorded on top of the model. The source is a vertical force at $X = 3.0$ km and the receivers are placed between $X = 0.5$ km and $X = 5.5$ km with a 50 m increment. The source signal is a Ricker wavelet with a central frequency of 10 Hz.

<table>
<thead>
<tr>
<th>Thickness (km)</th>
<th>Top layer</th>
<th>Bottom half-space</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{P0} (km/s)</td>
<td>3.00</td>
<td>3.20</td>
</tr>
<tr>
<td>V_{S0} (km/s)</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>ε</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>δ</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>Q_{P0}</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Q_{S0}</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ε_Q</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>δ_Q</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 1: Synthetic VTI model used to test the Kirchhoff scattering integral. The P-wave is reflected from a horizontal interface between the two media.

CONCLUSIONS

We introduced a ray-based methodology for computing synthetic seismograms of reflected waves from attenuative anisotropic media. The wavefield is generated with the Kirchhoff scattering integral that includes 2.5D asymptotic Green’s functions computed using Gaussian beam summation and perturbation theory. The accuracy of the Gaussian-beam summation method in producing Green’s functions was verified for highly attenuative TI media. We also compared the Kirchhoff scattering integral with the exact seismograms computed using the reflectivity method. The examples confirm that the proposed technique adequately models P-wave reflections even in the presence of strong anisotropic attenuation. However, the frequency content of the data produced by the Kirchhoff scattering integral is lower than that of the exact seismograms.

ACKNOWLEDGMENTS

We are grateful to the members of the A(nisotropy)-Team of the Center for Wave Phenomena (CWP), Colorado School of Mines, for fruitful discussions. Support for this work was provided by the Consortium Project on Seismic Inverse Methods for Complex Structures at CWP.
REFERENCES