Image-domain and data-domain waveform tomography: a case study

Esteban Díaz¹, Yuting Duan¹, Gerhard Pratt², and Paul Sava¹
¹Center for Wave Phenomena, Colorado School of Mines, ²University of Western Ontario

SUMMARY

Wavefield-based tomographic methods are idoneous for recovering velocity models from seismic data. The use of wavefields rather than rays is more consistent with the bandlimited nature of seismic data. Image domain methods seek to improve the focusing in extended images, thus producing better seismic images. However, image domain methods produce low resolution models due to the fact that their objective functions are smooth, particularly in the vicinity of the global minimum. In contrast, data-domain methods produce high resolution models but suffer from strong non-linearity causing cycle skipping if certain conditions are not met. By combining the characteristics of each method, we can obtain models that produce better images and contain high resolution features at the same time. We demonstrate a workflow that combines both methods with an application to a broadband marine 2D dataset with a variable streamer depth.

INTRODUCTION

Velocity analysis methods based on wavefield extrapolation are commonly referred to as Wavefield Tomography (WT) (Tarantola, 1984; Woodward, 1992; Pratt, 1999; Sava and Biondi, 2004a,b; Shen and Symes, 2008; Biondi and Symes, 2004; Symes, 2008); such tomographic approaches can be formulated either in the image domain, where one tries to improve image quality, or in the data domain, where one seeks consistency between modeled and observed data.

Image-domain wavefield tomography (iWT) can be formulated by many means. A common approach aims to improve the flatness of angle gathers; equivalently one can improve the focusing of space-lag gathers (Shen and Calandra, 2005). Space-lag gathers (Rickett and Sava, 2002; Sava and Fomel, 2006) measure the spatial similarity between source and receiver wavefields. Hence, during tomography, one seeks to increase the similarity of the spatial correlation for a collection of seismic experiments (Shen and Symes, 2008; Yang and Sava, 2011; Weibull and Arntsen, 2013; Yang et al., 2013; Shan and Wang, 2013). Inverse problems formulated in the image domain are generally better-posed than those formulated in the data domain.

Data-domain wavefield tomography (dWT) is generally formulated by improving the consistency between modeled and observed data. Originally, Tarantola (1984) introduced the data difference as a similarity estimate in the time domain. Alternatively, the problem can be posed in the frequency domain (Pratt and Worthington, 1990; Pratt et al., 1998). In contrast to the image-domain formulation, data-domain wavefield tomography is highly non-linear resulting in an objective function with many local minima. To overcome the non-linearity, a multi-scale separation approach is needed (Bunks et al., 1995; Brenders and Pratt, 2007). Within each scale (wavenumber band or frequency band), the problem can be more linear if the initial model is closer to the one corresponding to the global minimum. Another loop of multi-scale can be added by introducing time damping, a method commonly referred to as Laplace-Fourier waveform inversion (Sigrue and Pratt, 2004; Shin and Ho Cha, 2009). The purpose of the time damping is to fit earlier arrivals first, and then to fit later arrivals progressively.

Both data-domain and image-domain tomographic methods share many parts of the process: both use the same extrapolation engine (the two-way wave equation), and share similarities in building the gradient of the objective function through the Adjoint State framework (Tarantola, 1984; Plessix, 2006; Symes, 2008). Both tomographic methods are complementary. Therefore, in this abstract, we combine image-domain and data-domain wavefield tomography approaches for optimizing the velocity model. The idea is to produce a model that improves focusing with image-domain wavefield tomography and then refine it using data-domain wavefield tomography. We apply the cascaded workflow to a marine 2D dataset. The data are acquired with a variable depth streamer cable, which produces a diverse notch spectrum (Soubbaras and Dowle, 2010). The increased depth produces a better low frequency response, which can be useful in the multi-scale approach discussed earlier.

IMAGE-DOMAIN WT

Space-lag gathers (Rickett and Sava, 2002; Sava and Vasconcelos, 2011) highlight the spatial consistency between wavefields by exploring the focusing information in the image domain. The focusing in the gather is sensitive to velocity perturbations, and hence can be optimized. Space-lag gathers are defined as follows:

$$R(x, \lambda) = \sum_{c,t} u_s(c, x - \lambda, t)u_r(c, x + \lambda, t),$$

(1)

where λ is the space-lag vector, x the image location, c the experiment index, u_s the source wavefield, and u_r the receiver wavefield. The source wavefield u_s is produced by forward extrapolation of the source function, whereas the receiver wavefield u_r is produced by backward propagation of the data at the receiver location. In matrix notation, the process is described by

$$
\begin{bmatrix}
L(m,t) & 0 \\
0 & L^T(m,t)
\end{bmatrix}
\begin{bmatrix}
u_s \\
u_r
\end{bmatrix}
= \begin{bmatrix}
f_s \\
f_r
\end{bmatrix},
$$

(2)
where $m = 1/v^2(x)$ is the medium slowness squared, f_s is the source function, f_r is the data at the receiver locations, $L(m)$, and $L^T(m)$ are forward and backward wave propagators, respectively. Here, we use the acoustic wave equation as wave operator:

$$L(m) = \frac{m(x)}{\rho(x)} \frac{\partial^2}{\partial t^2} - \nabla \cdot \frac{1}{\rho(x)} \nabla.$$

(3)

For iWT we use a constant density $\rho(x) = 1$ km/m3. A well-focused gather concentrates most of its energy around $\lambda = 0$. This can be used as an optimization criterion by minimizing the energy outside $\lambda = 0$. We can accomplish this by defining an objective function

$$J = \frac{1}{2} \| P(\lambda) R(x, \lambda) \|^2,$$

(4)

where $P(\lambda)$ is the penalty function, which plays a vital role in the inversion. Depending on the choice of the penalty operator $P(\lambda)$, equation 4 can be either minimized or maximized. Here, we use $P(\lambda) = |\lambda|$ (Shen and Symes, 2008) as penalty operator. This penalty operator defines a smooth objective function and corrects for most kinematic errors in the model.

Once we have the penalized gathers (image residuals), we compute the adjoint sources (Shen and Symes, 2008; Weibull and Arntsen, 2013),

$$g_s(x, t) = \sum_{\lambda} P(\lambda)^2 R(x + \lambda, \lambda) u_r(x + 2\lambda, t)$$

(5)

for the source terms, and

$$g_r(x, t) = \sum_{\lambda} P(\lambda)^2 R(x - \lambda, \lambda) u_r(x - 2\lambda, t)$$

(6)

for the receiver terms. Once we have the adjoint sources, we solve the adjoint equations

$$\begin{bmatrix} \alpha^T(m, t) & 0 \\ 0 & \alpha_r(m, t) \end{bmatrix} \begin{bmatrix} \alpha_s \\ \alpha_r \end{bmatrix} = \begin{bmatrix} \alpha_s \\ \alpha_r \end{bmatrix},$$

(7)

and compute the gradient of equation 4 using

$$\nabla J(x) = \sum_{e,t} \bar{u}_s(e, x, t) a_s(e, x, t) + \bar{u}_r(e, x, t) a_r(e, x, t).$$

(8)

DATA-DOMAIN WT

The construction of the tomography problem in the data domain begins with a measure of the error (or residual) at the receiver locations. For dWT, we normally use the data difference

$$J = \frac{1}{2} \| u_s - f_r \|^2 = \frac{1}{2} \left\| \Delta d^{ref}(e, x_r, \Omega) \right\|^2,$$

(9)

or the phase residual

$$J = \frac{1}{2} \| \text{arg}(u_s) - \text{arg}(f_r) \|^2 = \frac{1}{2} \left\| \Delta d^{phas}(e, x_r, \Omega) \right\|^2.$$

(10)

where x_r are the receiver locations and Ω is the complex valued frequency described below. First, we produce synthetic data by forward propagating the source function $f_s(x_r, \Omega)$:

$$L(m, \Omega) u_s = f_s(e, x_r, \Omega)$$

(11)

$L(m, \Omega)$ is the acoustic wave-equation transformed to the frequency domain. For dWT we parametrize the density $\rho(x)$ as a function of the velocity following Gardner et al. (1974). The adjoint wavefield $a_s(e, x, \Omega)$ is computed by backpropagating the data residual

$$L^T(m, \Omega) a_s = \Delta d(e, x_r, \Omega).$$

(12)

Once we obtain $u_s(e, x, \Omega)$ and $a_s(e, x, \Omega)$, we can proceed to compute the gradient:

$$\nabla J(x) = \Re \left\{ \sum_{e,t} \Omega^2 u_s(e, x, \Omega) a^*_s(e, x, \Omega) \right\},$$

(13)

here * is the complex conjugate and $\Re \{ \}$ is the real part. The complex valued frequency $\Omega = \omega + i/\tau$, where τ is the characteristic time for exponential damping, can be used for a multi-scale workflow which can help to circumvent the local minima problems of equation 9 (Sirgue and Pratt, 2004; Shin and Ho Cha, 2009; Kamei et al., 2013). The idea is to first fit lower frequencies ω and earlier arrivals, and then repeat the inversion using longer damping constant τ. In order to get consistent observed data with the damped modeled data, one must also scale the observed data as $f_s(e, x_r, t) = d_{obs}(e, x_r, t)e^{-t/\tau}$ before the transformation to frequency domain.

The low frequencies in the data are sensitive to the long wavelength (smooth) components of the earth model. However, if the data do not contain sufficiently low frequencies or sufficiently large offsets, dWT is unable to update such components. In contrast, focusing in extended images is mostly sensitive to the smooth components of the model. By implementing a joint workflow using iWT for updating the smooth components of the model and later using dWT for the high resolution features of the model, we can obtain a more complete spectrum of the model.

APPLICATION TO A REAL 2D DATASET

In this section we demonstrate our proposed workflow with a real 2D marine dataset acquired with a variable depth cable (Soubaras and Dowle, 2010). The streamer contains increased depths as a function of offset, which enhances the frequency content of the data by producing a mixed notch response. Hence, the increasing cable depths improve the low frequency content at intermediate and far offsets which is very helpful for dWT. The acquisition setup in the modeling software mimics the variable depth streamer cable and the free surface, hence it is consistent with the observed data.

We build the initial model, Figure 1(a)(top), by performing time-domain NMO analysis followed by smoothing, RMS (stacking) conversion to interval velocity (Dix,
Figure 1: Imaging composition with: velocity (top), RTM image (center) and angle-gathers (bottom) from (a) the initial velocity model, (b) the dWT model built from the starting model, (c) the iWT model, and (d) the dWT model built from the iWT model.
Given a model using dWT, we can see in Figure 2(b) how the amplitude and phase mismatch. After updating the initial model, Figure 2(a), show large residuals corresponding to the initial model, Figure 2(a)(top). The dWT process slows the velocity in the shallow part of the section, close to the water bottom, introducing a sharp discontinuity in the model. One can see in the gathers, Figure 1(b)(bottom), that in the shallow part the events get flatter with the new velocity. However, the deeper section does not change significantly. This area of the model corresponds to longer travel-times in the data, and these late arrivals are down-weighted in the inversion by the exponential time damping (in order to avoid cycle skipping).

We generate the model in Figure 1(c)(top) using the iWT approach. The idea of this tomographic step is to correct for the bulk of the kinematic errors in the model. The updated velocity, in general becomes slower, especially in the deep part of the section. Figure 1(c)(center) shows the corresponding RTM image, with increased focusing around z = 3.5 km. This observation is confirmed in Figure 1(c)(bottom), where the gathers are flatter throughout the section.

We then update the iWT model using dWT. Figure 1(d) (top) depicts the updated model (compare with Figure 1(b)), which changes considerably in the interval z = 4 km to z = 6 km. From the corresponding RTM image and angle gathers we can see that the final dWT step does not significantly vary the kinematics of the experiment. However, it introduces subtle structural features in the image. We can see that the structure of the line becomes flatter with the new model (see for instance the event at z = 4 km and x = 18 to 24 km).

Figure 2: Data domain residuals for shot position x = 18.75 km using: (a) the initial velocity model, (b) the dWT model built from the initial model, (c) the iWT model, and (d) the dWT model built from the iWT model.

CONCLUSIONS
The combination of image-domain and data-domain wavefield tomography seeks to exploit the features of each method. Image-domain wavefield tomography methods are sensitive to the smooth components of the model due to the definition of the objective problem. Once we obtain a smooth model that improves focusing in the extended images, we can proceed to further refine the model using data-domain wavefield tomography. We demonstrate the cascaded workflow using a real 2D marine dataset. Our image-domain wavefield tomography model corrects most of the kinematic errors in the model, whereas the data-domain wavefield tomography model corrects early arrival phase errors in the data, and introduces discontinuities in the model directly correlated with events in the image.

ACKNOWLEDGMENTS
We thank sponsor companies of the Consortium Project on Seismic Inverse Methods for Complex Structures. The seismic data shown in this abstract is proprietary to and provided courtesy of CGG. We thank Bruce Ver-West for the support with the dataset. The reproducible numeric examples in this paper use the Madagascar opensource software package (Fomel et al., 2013) freely available from http://www.ahay.org.
REFERENCES

Dix, C., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68–86.

