Attenuation tomography in 2D TI media

Tong Bai* & Ilya Tsvankin

Center for Wave Phenomena
Colorado School of Mines
Example of attenuation anisotropy

Zhu et al (2007)
TI velocity and attenuation parameters

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{P0}</td>
<td>A_{P0}</td>
</tr>
<tr>
<td>V_{S0}</td>
<td>A_{S0}</td>
</tr>
<tr>
<td>ε</td>
<td>ε_Q</td>
</tr>
<tr>
<td>δ</td>
<td>δ_Q</td>
</tr>
<tr>
<td>γ</td>
<td>γ_Q</td>
</tr>
</tbody>
</table>

\[
A_P(\theta) = A_{P0} \left(1 + \delta_Q \sin^2 \theta \cos^2 \theta + \varepsilon_Q \sin^4 \theta \right)
\]

θ — angle with symmetry axis

Zhu & Tsvankin (2006)
Piecewise-factorized VTI model

\[V_{P0}(x,z) = V_{P0}(0,0) + k_x x + k_z z \]

\[\delta \]

\[\varepsilon \]

\[Q_{P0}(x,z) = Q_{P0}(0,0) + j_x x + j_z z \]

\[\delta_Q \]
Kirchhoff modeling + Gaussian-beam summation
Migration velocity analysis

For each factorized block:

\[V_{\text{nmo}} = V_{P0} \sqrt{1 + 2\delta} \]

\[k_z = k_x \sqrt{1 + 2\delta} \]

\[\eta = \frac{\varepsilon - \delta}{1 + 2\delta} \]

\[k_x \]

\[V_{P0} \]

\[k_z \]

\[\varepsilon \]

\[\delta \]

Sarkar & Tsvankin (2004)
$A_P(\theta) = A_{P0} \left(1 + \delta_Q \sin^2 \theta \cos^2 \theta + \varepsilon_Q \sin^4 \theta \right)$
Linearized inversion

\[m = \left[Q_{P0}(0,0), j_X, j_Z, \varepsilon_Q, \delta_Q \right] \]

quasi-Newton: \(m^{(j+1)} = m^{(j)} - \alpha H^{-1} g^{(j)} \)
Summary

- factorized VTI for velocity and attenuation
- Kirchhoff + Gaussian-beam modeling
- migration velocity analysis
- attenuation layer stripping
- linearized inversion for $A_{P0}(x,z)$, ε_Q, δ_Q
Acknowledgments

- Bharath Shekar
- Jyoti Behura
- John Stockwell
- CWP faculty and students