Automatic and simultaneous correlation of multiple well logs

Loralee Wheeler* and Dave Hale
Center for Wave Phenomena
Colorado School of Mines
Well locations

Courtesy of Rocky Mountain Oilfield Test Center
Well locations

Courtesy of Rocky Mountain Oilfield Test Center
Density logs
After alignment
Aligned with static shifts
After alignment
After alignment
Log correlation

Depth (km)

Log index

Density (g/cc)
Two logs

Density (g/cc)

2 2.5 3

Depth (km)

0 0.5 1 1.5

log 1

log 2

Density (g/cc)

2 2.5 3

Two logs
Two logs

Density (g/cc)

2.5 3

Depth (km)

1.35
1.4
1.45
1.5
1.55
1.6
1.65
1.7

log 1

log 2
Two logs

Density (g/cc)

2.5 3

Depth (km)

1.35
1.4
1.45
1.5
1.55
1.6
1.65
1.7

\[f[i, I] \]
\[I = 1 \]

\[f[j, J] \]
\[J = 2 \]
Alignment error

\[e_{IJ}[i, j] \equiv |f[i, I] - f[j, J]|^{\frac{1}{8}} \]
Alignment error

\[e_{IJ}[i, j] \equiv |f[i, I] - f[j, J]|^{\frac{1}{8}} \]
Alignment error

\[e_{IJ}[i, j] \equiv |f[i, I] - f[j, J]|^{\frac{1}{8}} \]
Alignment error

$e_{IJ}[i, j] \equiv |f[i, I] - f[j, J]|^{\frac{1}{8}}$
Alignment error

\[e_{IJ}[i, j] \equiv \left| f[i, I] - f[j, J] \right|^{\frac{1}{8}} \]
Alignment error

\[e_{I,J}[i,j] \equiv |f[i,I] - f[j,J]|^2 \]
Alignment error

\[e_{IJ}[i, j] \equiv |f[i, I] - f[j, J]|^{\frac{1}{8}} \]
ij-coordinate system
ij-coordinate system
ij-coordinate system
ij-coordinate system
$k\ell$-coordinate system
kl-coordinate system
$k\ell$-coordinate system
Alignment error $e_{IJ}[k, l]$
Alignment error $e_{IJ}[k, l]$
Alignment error $e_{IJ}[k, l]$
Alignment error $e_{IJ}[k, l]$
Pairwise correlation

\[I = 1 \]

\[f[i, I] \]

\[I = 1 \]

\[f[j, J] \]

\[J = 2 \]
Well locations

Well locations shown on a crossline and inline map.
Density logs
Density logs

Log index

Depth (km)

Density (g/cc)
Density logs
$13! = 6$ billion possible orderings
13x12/2 = 78 possible log pairs
13x12/2 = 78 possible log pairs
Pairwise correlation

\[f(z, 1) \]

\[f(z, 2) \]
Pairwise correlation

\[f(z, 1) \]

\[f(z, 2) \]
Pairwise correlation

\[s(z_i, 1) \]

\[s(z_j, 2) \]

\[f(z, 1) \]

\[f(z, 2) \]
Relative geologic time

\[\tau(z_i, 1) = z_i + s(z_i, 1) \quad \tau(z_j, 2) = z_j + s(z_j, 2) \]
Relative geologic time

\[\tau(z_i, 1) = z_i + s(z_i, 1) \quad \tau(z_j, 2) = z_j + s(z_j, 2) \]

\[\tau(z_i, 1) = \tau(z_j, 2) \]

\[z_i + s(z_i, 1) = z_j + s(z_j, 2) \]
Relative geologic time

\[\tau(z_i, 1) = z_i + s(z_i, 1) \quad \tau(z_j, 2) = z_j + s(z_j, 2) \]

\[\tau(z_i, 1) = \tau(z_j, 2) \]

\[z_i + s(z_i, 1) = z_j + s(z_j, 2) \]

\[s(z_i, 1) - s(z_j, 2) = z_j - z_i \]
\[s(z_i, I) - s(z_j, J) = z_j - z_j \]
\[s(z_i, I) - s(z_j, J) = z_j - z_j \]

\[\frac{L(L - 1)}{2} \times N_z = 150,000 \text{ equations} \]

\[L \times N_z = 25,000 \text{ unknown shifts} \]

\[N_z : \text{number of depths} \quad L : \text{number of logs} \]
\[s(z_i, I) - s(z_j, J) = z_j - z_j \]

\[D_s s \approx d_z \]
\[s(z_i, I) - s(z_j, J) = z_j - z_j \]

\[D_s s \approx d_z \]

\[D_s^T D_s s = D_s^T d_z \]
After alignment
After alignment
After alignment
Squeezed
\[\tau(z, l) = z + s(z, l) \]
\[\tau(z, l) = z + s(z, l) \]

\[z(\tau, l) = \tau - r(\tau, l) \]
\[\tau(z, l) = z + s(z, l) \]
\[z(\tau, l) = \tau - r(\tau, l) \]
\[s(z, l) = r(\tau(z, l), l) \]
\[r(\tau, l) = s(z(\tau, l), l) \]
\[s(z_i, I) - s(z_j, J) = z_j - z_j \]
\[s(z_i, I) - s(z_j, J) = z_j - z_j \]

\[r(\tau(z_i, I), I) - r(\tau(z_j, J), J) = z_j - z_i \]
\[r(\tau(z_i, I), I) - r(\tau(z_j, J), J) = z_j - z_i \]
\[r(\tau(z_i, I), I) - r(\tau(z_j, J), J) = z_j - z_i \]

\[D_r r \approx d_z \]

\[D_r^T D_r r = D_r^T d_z \]
Density logs
After alignment
After alignment
After alignment
After alignment
13x12/2 + 11x10/2 + 5x4/2 = 142 possible log pairs
\[r(\tau(z_i, I), I) - r(\tau(z_j, J), J) = z_j - z_i \]
\[r(\tau(z_i, I), I) - r(\tau(z_j, J), J) = z_j - z_i \]

\[\sum_{m=1}^{N_m} \frac{L_m(L_m - 1)}{2} = 270,000 \text{ equations} \]

\[W \times N_z = 25,000 \text{ unknown shifts} \]

\(N_z \): number of depths \hspace{1cm} \(W \): number of wells
\(N_m \): number of log types \hspace{1cm} \(L_m \): number of logs of type \(m \)
Summary

1. pairwise correlation
 not L$_2$-norm
 rotated coordinate system
2. consistency
 least-squares solution
 relative geologic time shifts
<table>
<thead>
<tr>
<th>Era</th>
<th>Formation</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permian</td>
<td>Goose Egg</td>
<td>5205</td>
</tr>
<tr>
<td>Pennsylvanian</td>
<td>Tensleep</td>
<td>5525</td>
</tr>
<tr>
<td></td>
<td>Amsden</td>
<td>5845</td>
</tr>
<tr>
<td>Triassic</td>
<td>Chugwater Group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red Peak</td>
<td>4685</td>
</tr>
<tr>
<td></td>
<td>Crow Mtn</td>
<td>4585</td>
</tr>
<tr>
<td></td>
<td>Alcova LS</td>
<td>4665</td>
</tr>
<tr>
<td>Jurassic</td>
<td>Sundance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper</td>
<td>4340</td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>4435</td>
</tr>
<tr>
<td></td>
<td>Morrison</td>
<td>4070</td>
</tr>
<tr>
<td>Lower Cretaceous</td>
<td>Mowry Shale</td>
<td>3595</td>
</tr>
<tr>
<td></td>
<td>Muddy Sandstone</td>
<td>3825</td>
</tr>
<tr>
<td></td>
<td>Thermopolis Shale</td>
<td>3840</td>
</tr>
<tr>
<td></td>
<td>Dakota</td>
<td>3975</td>
</tr>
<tr>
<td></td>
<td>Lakota</td>
<td>4060</td>
</tr>
<tr>
<td></td>
<td>Frontier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1st Wall Creek</td>
<td>2680</td>
</tr>
<tr>
<td></td>
<td>2nd Wall Creek</td>
<td>3085</td>
</tr>
<tr>
<td></td>
<td>3rd Wall Creek</td>
<td>3330</td>
</tr>
<tr>
<td></td>
<td>Carlisle Shale</td>
<td>2440</td>
</tr>
</tbody>
</table>
Formation properties identified by Beyer & Clutsom, 1978

<table>
<thead>
<tr>
<th>Formation</th>
<th>Density (g/cc)</th>
<th>Porosity (%)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Wall Creek</td>
<td>2.44</td>
<td>20.7</td>
<td>810</td>
</tr>
<tr>
<td>Crow Mountain</td>
<td>2.49</td>
<td>18.0</td>
<td>1390</td>
</tr>
<tr>
<td>Tensleep</td>
<td>2.55</td>
<td>8</td>
<td>1680</td>
</tr>
</tbody>
</table>

Formation properties identified in 13 Teapot Dome wells

<table>
<thead>
<tr>
<th>Formation</th>
<th>Density (g/cc)</th>
<th>Porosity (%)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Wall Creek</td>
<td>2.45</td>
<td>20.0</td>
<td>780</td>
</tr>
<tr>
<td>Crow Mountain</td>
<td>2.33</td>
<td>21.3</td>
<td>1350</td>
</tr>
<tr>
<td>Tensleep</td>
<td>2.48</td>
<td>9.4</td>
<td>1650</td>
</tr>
<tr>
<td>Period</td>
<td>Formation</td>
<td>Lithology</td>
<td>Thickness (feet)</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Cambrian</td>
<td>Granite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambrian</td>
<td>Undifferentiated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mississippian</td>
<td>Madison</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pennsylvania</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terareep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permian</td>
<td>Goose Egg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triassic</td>
<td>Chugwater Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jurassic</td>
<td>Morrison</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dakota</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lakota</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Cretaceous</td>
<td>Moony Sandstone</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Thermopolis Shale</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Dakota</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Lakota</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Morrison</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Sundance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triassic</td>
<td>Chugwater Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Cretaceous</td>
<td>Niobrara Shale</td>
<td></td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Carbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niobrara Shale</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>1st Wall Creek</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>2nd Wall Creek</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>3rd Wall Creek</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permian</td>
<td>Sussex</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Pennsylvanian</td>
<td>Bennie</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Mississippian</td>
<td>Madison</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>Cambrian</td>
<td>Differentiated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\tau(z, l) = z + s(z, l) \]
\[\tau(z, l) = z + s(z, l) - \bar{s}(z) \]
\[\tau(z_i, I) = z_i + s(z_i, I) - \bar{s}(z_i) \]
\[\tau(z_j, J) = z_j + s(z_j, J) - \bar{s}(z_j) \]
\[\bar{s}(z_i) \neq \bar{s}(z_j) \]
\[\tau(z_i, I) \neq \tau(z_j, J) \]
$$\tau(z, l) = z + s(z, l)$$
$$\tau(z, l) = z + r(\tau(z, l), l)$$
$$\tau(z, l) = z + r(\tau(z, l), l) - \bar{r}(\tau(z, l))$$
$$\tau(z_i, I) = z_i + r(\tau(z_i, I), I) - \bar{r}(\tau(z_i, I))$$
$$\tau(z_j, J) = z_j + r(\tau(z_j, J), J) - \bar{r}(\tau(z_j, J))$$
$$\tau(z_i, I) = \tau(z_j, J)$$
$$\bar{r}(\tau(z_i, I)) = \bar{r}(\tau(z_j, J))$$
\[r(\tau, l) = c(l) + q(\tau, l) \]

\[c(I) - c(J) = z_j - z_i \]

\[\frac{L(L-1)}{2} \times N_z = 150,000 \text{ equations} \]

\[L = 13 \text{ unknown shifts} \]

\[N_z : \text{number of depths} \quad L : \text{number of logs} \]
\[r(\tau, l) = c(l) + q(\tau, l) \]

\[c(I) - c(J) = z_j - z_i \]

\[D_c c = d_c \]
\[r(\tau(z_i, I), I) - r(\tau(z_j, J), J) = z_j - z_i \]

\[(c(I) + q(z_i, I)) - (c(J) + q(z_j, J)) = z_j - z_i \]

\[q(z_i, I) - q(z_j, J) = z_j - z_i + c(J) - c(I) \]

\[D_r q \approx d_u \]

\[D_r^T D_r q = D_r^T d_u \]