Waveform inversion for microseismic velocity analysis and event location in VTI media

Oscar Jarillo Michel and Ilya Tsvankin

Center for Wave Phenomena
Colorado School of Mines
Previous work

- 2D inversion for VTI media
- source and medium parameters
- adjoint-state method
- based on finite-differences
Elastic wave equation

\[\rho \frac{\partial^2 u_i}{\partial t^2} - \frac{\partial}{\partial x_j} \left(c_{ijkl} \frac{\partial u_k}{\partial x_l} \right) = -M_{ij} \frac{\partial [\delta(x - x^s)]}{\partial x_j} S(t) \]

- \text{density}
- \text{stiffness tensor}
- \text{moment tensor}
- \text{source function}
Source parameters

\[\mathbf{m} = \{x_1^s, x_3^s, t_0, M_{11}, M_{13}, M_{33}, M_{12}, M_{23}\} \]

SH-waves
VTI parameterization

\[V_{\text{hor}} = V_{P0} \sqrt{1 + 2\varepsilon} \]

\[\eta = \frac{\varepsilon - \delta}{1 + 2\delta} \]

\[\varepsilon \]

\[V_{S0} \]
(Alkhalifah and Plessix, 2014; Kamath et al., 2016)
Methodology

\[\mathcal{F}(m) = \frac{1}{2} \sum_{s, r} \| u_{\text{pre}}(m) - u_{\text{obs}} \|^2 \]

Gradient: Adjoint-state method

L-BFGS method (Byrd et al., 1995)
Inversion for event location and VTI parameters
Data rotation

Source
Data rotation

\[x_2 \]

\[x_1 \]

\[u_{\parallel} \]

\[u_{\perp} \]

\[u_1 \]

\[u_2 \]

\[\theta \]

Source
Radial and transverse components

\[
\begin{bmatrix}
 u_{\parallel} \\
 u_{\perp} \\
 u_3
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & \sin \theta & 0 \\
 -\sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3
\end{bmatrix}
\]
Vertical plane
Methodology: sequential inversion

- inversion stages
- each stage:
 - iterative event location
 - iterative velocity analysis
Synthetic example

- error in initial locations: ± 20 m
- initial model obtained by smoothing
- five inversion stages
- dislocation-type sources
Actual and initial parameters

V_{hor}
V_{S0}
η
ε

(m/s)
(m/s)

Inverted (after stage 1), actual, and initial parameters

\[V_{\text{hor}} \]

\[V_{S0} \]

\[\eta \]

\[\varepsilon \]
Inverted (after stage 5), actual, and initial parameters

V_{hor}, V_{S0}, η, ε

(m/s) (m/s)
Inverted V_{hor}
Source coordinates

Horizontal

![Horizontal graph with stage number on the x-axis and x_1 (m) on the y-axis.](image)

Vertical

![Vertical graph with stage number on the x-axis and x_3 (m) on the y-axis.](image)
Influence of noise
Data with Gaussian noise (S/N ≈ 11)
Actual and initial parameters

\[V_{\text{hor}} \]

\[V_{S0} \]

\[\eta \]

\[\varepsilon \]
Inverted, actual, and initial parameters (at 600 m)

\[V_{\text{hor}} \]

\[V_{S0} \]

\[\eta \]

\[\varepsilon \]
Extension to 3D
3D pseudospectral modeling

- less numerical dispersion
- arbitrary anisotropy (Sun et al., 2016)
Initial model

V_{hor} (m/s)
Actual and initial parameters

V_{hor}
V_{S0}
η
ε

x_3 (m)
x_3 (m)
x_3 (m)
x_3 (m)

(m/s)
(m/s)
(m/s)
(m/s)
Inverted V_{hor} and V_{S0}
Inverted η and ε
Inverted, actual, and initial parameters

V_{hor}

V_{S0}

η

ε

x_3 (m)

x_3 (m)

x_3 (m)

x_3 (m)

(m/s)

(m/s)

(m/s)

(m/s)
Initial model
Inverted V_{hor} (30 events)
Inverted V_{hor} (10 events)
Inverted V_{hor} (30 events)
Inverted, actual, and initial parameters

\(V_{\text{hor}} \)

\(V_{S0} \)

\(\eta \)

\(\varepsilon \)
Displacement for initial model

Well 1

Well 2
Displacement for inverted model

Well 1

Well 2
Observed displacement

Well 1

Well 2
Summary

- WI for event location and VTI parameters
- sequential inversion, multiple stages
- extension to 3D VTI media
- velocity inversion with three wells
Ongoing and future work

- 3D event location
- inversion for orthorhombic media
- application to field data
Acknowledgments

- A-Team and iTeam
- Vladimir Grechka (Marathon Oil)
- Junzhe Sun