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ABSTRACT
Microseismic events generate compressive waves and shear waves which can be
recorded at receivers. We present a theory that shows how elastic P and S waves
separately backpropagate to the original source location. These refocused P
and S wavefields are free of singularities. We also demonstrate a technique that
enhances the ability to image the spatial focus for each wave type using elastic
waves. The improved spatial focus obtained is achieved in a velocity model for
which the interface boundaries are approximate but where the mean slowness is
correct. Deconvolution designs a signal to be rebroadcasted from the receivers,
using only the waves recorded at each receiver, such that the wavefield has an
optimal temporal focus at the source location. We demonstrate theoretically
and numerically that improved temporal focusing of elastic waves leads to
improved spatial focusing for each wave type. This proposed technique only
involves a simple preprocessing step to the recorded data and its cost is hence
negligible compared to the total cost of microseismic imaging.

Key words: Deconvolution, Signal Focusing, Image processing, Fractures and
faults, Computational seismology, and Earthquake source observations

1 INTRODUCTION

Due to hydraulic fracturing becoming a common prac-
tice for unconventional gas and oil fields, there has
been an increased interest into the study of microseis-
mic events. Clusters of microseismic events delineate
faults and the formation of fractures, and can indicate
new or reactivating regions of failure. These microseis-
mic events can be generated naturally or as a result
of hydraulic stimulation (Duncan, 2005; Kendall et al.,
2011). Therefore, the petroleum industry desires to de-
velop more accurate ways of locating, and monitoring
microseismic events to potentially improve their rela-
tionship to production and completion data (Foulger
and Julian, 2012).

A common processing method to locate microseis-
mic events or earthquakes is based on picking arrival
times of the acoustic and shear waves. This process,
however, is difficult to do accurately when significant
noise is present in the data (Bose et al., 2009; Bancroft
et al., 2010; Kummerow, 2010; Song et al., 2010; Hayles
et al., 2011). An alternative approach, which requires
less user interaction and allows for more accuracy, is us-
ing time reversal to image the focus of the microseismic
events or earthquakes at the source location (McMechan
et al., 1985; Larmat et al., 2006, 2010; Lu, 2008; Steiner

et al., 2008; Lu et al., 2008; Artman et al., 2010). In this
imaging approach, one uses time reversal to focus the
recorded signal at the source location in both time and
space. The advantage of time reversal is that it does not
require picking of arrival times which is important when
dealing with noisy data.

If one would time reverse the waves at every point
in space, the wavefield will focus onto the original source
location. If, however, the wavefield is sampled at only a
limited number of locations, then it is not obvious that
time reversal is the optimal way to focus energy on the
original source. Much research has been carried out on
focusing sparsely sampled wavefields (Parvulescu, 1961;
Fink, 1997; Roux and Fink, 2000; Tanter et al., 2000,
2001; Aubry et al., 2001; Bertaix et al., 2004; Jonsson
et al., 2004; Montaldo et al., 2004; Vignon et al., 2006;
Larmat et al., 2010; Gallot et al., 2011). In this paper,
we explore a simple extension to time reversal, based
on deconvolution, as previously derived by Ulrich et al.
(2013). We have shown earlier that deconvolution im-
proves the locating of microseismic events in an acous-
tic medium (Douma et al., 2013). We now demonstrate
deconvolution’s ability to improve the imaging of a mi-
croseismic event in an elastic medium. This method is
a robust, though simplified, version of the inverse filter
(Tanter et al., 2000, 2001; Gallot et al., 2011). It calcu-
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lates a signal to be rebroadcast from the receiver such
that the output at the focal location becomes an ap-
proximate delta function δ(t) and uses only the recorded
signals at each receiver.

As with all imaging methods, reverse time imag-
ing is unable to locate the microseismic event to a point
location when the velocity model used for the backprop-
agation differs from the true velocity model, or when the
aperture is limited; it causes the spatial image to defo-
cus. In the numerical example used for this paper, the
aperture used is not perfect, thus, the wavefield is not
know at every point in both time and space. Addition-
ally, we complicate our model by back-propagating our
wavefields not through the correct velocity model but
through a smoothed version of the velocity model.

In this paper, we first derive a relationship between
the temporal focus and the incoming wave for an elas-
tic medium. The theory is used to show that improved
temporal focusing leads to improved spatial focusing for
each wave type due to different sources (explosive, point
force, and double couple). We then show a numerical ex-
ample in which a horizontal point force excites elastic
waves.

2 THEORY

In this section, we show that improved temporal focus-
ing leads to improved spatial focusing for both P- and S-
waves. We first consider a homogeneous elastic medium
where either P, SV, or SH waves are incident on a fo-
cal point. According to expression (8.13) of Aki and
Richards (2002), the elastic wavefield can be expressed
as

u(r, θ, ϕ) =
∑
lm

(Ul(r)R
m
l (θ, ϕ) + Vl(r)S

m
l (θ, ϕ)

+Wl(r)T
m
l (θ, ϕ)) .

(1)

The vector spherical harmonics in equation 1 are given
by

Rm
l (θ, ϕ) = Ylm(θ, ϕ)r̂ (P− waves) , (2)

Sm
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1√
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(
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∂θ
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1

sin θ

∂Ylm(θ, ϕ)

∂ϕ
ϕ̂

)
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(3)

Tm
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1√
l(l + 1)

(
1

sin θ

∂Ylm(θ, ϕ)

∂ϕ
θ̂

− ∂Ylm(θ, ϕ)

∂θ
ϕ̂

)
(SH− waves) ,

(4)

where Ylm(θ, ϕ) denote the spherical harmonics. The ra-
dial functions Ul(r), Vl(r) andWl(r) are spherical Bessel
functions or spherical Hankel functions which satisfy
equation (8.6) of Aki and Richards (2002).

We consider the case of an incoming wave that, at
a large distance from the focal point ~r = 0, is given by
fl(t+ r/c)/r. We study the properties of this incoming
wave at the focus for every angular degree l separately.
For a perfect aperture, the angular degree l describes an
explosive source when l = 0, a point force when l = 1,
and a double-couple source when l = 2. Since there is
no source at the location ~r = 0, the solution is finite
and is therefore given by spherical Hankel functions jl :

Ul(r) ∝ jl(kr) where k = ω/α , (5)

with α representing the P-wave velocity, and

Vl(r) and Wl(r) ∝ jl(kr) with k = ω/β ,
(6)

where β the S-wave velocity. Thus, the radial variation
of the wavefield is proportional to jl(kr), with k the
wavenumber of the wave type under consideration. In
the following, we study wavefields with radial depen-
dence jl(kr) and denote the wavenumber as

k = ω/c , (7)

where c is the appropriate wave velocity (α or β de-
pending on the wave type). It is understood that the
total wavefield follows by multiplying with the appro-
priate vector spherical harmonic as given in expressions
(2)-(4). The radial dependence of the wavefield in the
frequency domain, therefore, is given by

Ul(r, ω) = Al(ω)jl(kr) , (8)

where Al(ω) is a Fourier coefficient.
Using the Fourier convention f(t) =∫

F (ω)e−iωtdω, the wavefield in the time domain
is given by

ul(r, t) =

∫
Al(ω)jl(kr)e

−iωtdω . (9)

The waves impinging on the focus are determined by
the incoming waves. For large radius r, the incoming
waves can be written as

uinc
l (r, t) =

fl(t+ r/c)

r
as r →∞ . (10)
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We show in the appendix that the total wavefield is
given for all values of r by,

ul(r, t) = (−i)l 2

c

∫
(−iω)Fl(ω)jl(kr)e

−iωtdω , (11)

where Fl(ω) is the temporal Fourier transform of fl(t).
Because our derivation involves repeated differenti-

ations and integrations, we employ the following nota-
tion:

f
(n)
l (t) ≡ dnfl(t)

dtn
. (12)

For negative values of n, this notation implies integrat-
ing fl(t) n-times. In the frequency domain, the notation
(12) translates into

F
(n)
l (ω) ≡ (−iω)nFl(ω) . (13)

Next, we relate the total wavefield ul(r, t) to the
spherical Bessel function of order 0 which makes it pos-
sible to evaluate the Fourier integral in equation (11) an-
alytically. This derivation, found in the appendix, gives:

ul(r, t) = clrl
(

1

r

d

dr

)l
(
f
(−l)
l (t+ r/c)− f (−l)

l (t− r/c)
r

)
.

(14)
This expression shows an explicit relationship between
the total wavefield ul(r, t) for all values of r, and the
incident wave, fl(t+ r/c)/r at a great distance r →∞.
Note that using the notation of equations (12)-(13),
the incoming wave is integrated l times in the fac-
tor f

(−l)
l (t ± r/c), and that the differential operator

(1/r)(d/dr) acts l times as well. The term f
(−l)
l (t+r/c)

is the wave that converges on the focal point, while
f
(−l)
l (t−r/c) gives the outgoing wave that radiates from

the focus after the incoming waves has passed through
that point. The incident wave fl(t + r/c) and the out-
going wave fl(t − r/c) have opposite sign because the
focus is a caustic in two angular directions, hence the
Maslow index increases by two, which corresponds to a
sign change (Chapman, 2004).

We now demonstrate how we can use the expression
for the wavefield near the focal point to demonstrate
that improved temporal focusing leads to improved spa-
tial focusing. The spatial focus Rl(r) is defined as the
wavefield at time t = 0. It follows from expression (14)
that the spatial focus is given by:

Rl(r) ≡ ul(r, t = 0)

= clrl
(

1

r

d

dr

)l
(
f
(−l)
l (r/c)− f (−l)

l (−r/c)
r

)
.

(15)

This expression gives the spatial focus in terms of the
incoming wave.

One might be tempted to define the temporal focus
as ul(r = 0, t). This field, according to expression (9),
is proportional to jl(kr) in the frequency domain. The
zeroth order Bessel function j0(kr) is nonzero for r = 0,
but jl(kr = 0) = 0 for l ≥ 1 (Arfken and Weber, 2001).
This means that for l ≥ 1, the wavefield vanishes at
the focal point. Physically, this is due to the fact that
for l ≥ 1, the focal point (r = 0) is located at the
intersection of nodal lines. Since Ul(r = 0, t) vanishes at
r = 0 for l ≥ 1, this quantity is not a useful diagnostic
of the temporal focus. To remedy this, we define the
temporal focus instead as

Tl(t) ≡
dl

drl
ul(r = 0, t) . (16)

As shown in the appendix, the l-th derivative of jl(kr) is
finite and nonzero for r = 0. We derive in the appendix
the following relation between the temporal focus and
the incoming waves,

Tl(t) =
2bl
cl+1

f
(l+1)
l (t) , (17)

where bl is given by

bl =
2l(l!)2

(2l + 1)!
. (18)

Specifically,

b0 = 1 , b1 = 1/3 , b2 = 2/15.

According to equation (17), the temporal focus thus is
proportional to the (l + 1)-th time derivative of the in-
coming wave. Of these (l+1) derivatives, given by equa-
tion (17), l are due to the derivatives in definition (16).
One time derivate is due to the fact that (14) contains
the combination (fl(t+ r/c)− fl(t− r/c)) /r. Using a
Taylor expansion and taking the limit r → 0, gives

lim
r→0

fl(t+ r/c)− fl(t− r/c)
r

= lim
r→0

2(r/c)f
′
l (t)

r
=

2

c
f

′
l (t).

This explains an additional time derivative in expression
(17).

3 SPATIAL AND TEMPORAL FOCUS FOR
EACH ANGULAR COMPONENT

The spatial and temporal focus defined by expressions
(15) and (17) both relate to the incoming waves and can
be combined to explicitly relate the spatial and tempo-
ral focus:
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Rl(r) =
c2l+1

2bl
rl
(

1

r

d

dr

)l
(
T

(−2l−1)
l (r/c)− T (−2l−1)

l (−r/c)
r

)
.

(19)
Equation (19) is the main result of the theory. Although
the relation (19) between the spatial and temporal focus
is complicated, it does show that good temporal focus-
ing implies good spatial focusing. Good temporal focus-
ing implies that Tl(t) is strongly peaked near t = 0,
i.e. that Tl(t) only differs appreciably from zero for a
small range of time values −tf < t < tf , where tf is
the half width of the temporal focus. Expression (19)
implies that the spatial focus differs appreciably from
zero for values of r that satisfy 0 ≤ r < ctf (radius is
always positive). A good temporal focus (small tf ) thus
implies a good spatial focus.

The spatial and temporal focus, and their relation-
ship defined by equations (15), (17), and (19) all depend
on the order l. In this section, we show the explicit forms
of these expressions for the case l = 0, l = 1, and l = 2.
These cases are relevant for an explosive source (l = 0),
point force (l = 1) and double-couple source (l = 2) if
the aperture would be perfect. For l = 0, equations (15),
(17), and (19) become respectively,

R0(r) =

(
f0(r/c)− f0(−r/c)

r

)
, (20)

T0(t) =
2

c
f
(1)
0 (t) , (21)

R0(r) =
c

2

(
T

(−1)
0 (r/c)− T (−1)

0 (−r/c)
r

)
. (22)

Equations (20),(21), and (22) are the same as shown
in the previous derivation of Ulrich et al. (2013) which
dealt with an explosive source in an acoustic medium
where the temporal focus is the time derivative of the
incoming wave.

We now continue the derivation for R(r) due to a
point force (l = 1) and double-couple (l = 2). For l = 1,
equations (15), (17), and (19) become respectively,

R1(r) =
1

r

(
f1(r/c) + f1(−r/c)

)

− c

r2

(
f
(−1)
1 (r/c)− f (−1)

1 (−r/c)

)
,

(23)

T1(t) =
3

2c2
f
(2)
1 (t) , (24)

R1(r) =
2c2

3

1

r

(
T

(−2)
1 (r/c) + T

(−2)
1 (−r/c)

)

− 2c3

3

1

r2

(
T

(−3)
1 (r/c)− T (−3)

1 (−r/c)

)
.

(25)

It may appear that equation (23) is singular at r = 0.
Even though each of the two terms in this expression
diverge as r → 0, the singularities cancel. This can be
verified by writing f1(r/c) = a0 +O(r). Integrating this

once gives f
(−1)
1 (r/c) = a0(r/c) + O(r2). Inserting this

into equation (23) gives

R1(r) =
1

r
(2a0 +O(r))− c

r2
(
2a0(r/c) +O(r2)

)
.

(26)
The terms proportional to a0, which caused each of the
individual terms in expression (23) to be singular, cancel
out. The remainder of equation (26) is finite as r → 0.

For l = 2, equations (15), (17), and (19) become
respectively,

R2(r) =
1

r

(
f2(r/c)− f2(−r/c)

)

− 3c

r2

(
f
(−1)
2 (r/c) + f

(−1)
2 (−r/c)

)

+
3c2

r3

(
f
(−2)
2 (r/c)− f (−2)

2 (−r/c)

)
.

(27)

T2(t) =
4

15c3
f
(3)
2 (t) , (28)

R2(r) =
15c3

4

1

r

(
T

(−3)
2 (r/c)− T (−3)

2 (−r/c)

)

− 45c4

4

1

r2

(
T

(−4)
l (r/c) + T

(−4)
l (−r/c)

)

+
45c5

4

1

r3

(
T

(−5)
l (r/c)− T (−5)

l (−r/c)

)
.

(29)

The wavefields computed are finite at the focal point
r = 0 when one refocuses either P or S-waves. In con-
trast, when P and S-waves are excited by a point force,
the P-wave component and the S-wave component be-
have as 1/r3 as r → 0, hence the P-wave and S-wave
separately have a non-integrable singularity at r = 0,
while their sum has an 1/r singularity Wu (1985), which
is integrable. The refocused wavefields don’t display this
behavior because these fields are source-free at r = 0,
and therefore the wavefield is finite. Therefore, the P
and S-waves can be refocused separately without caus-
ing singularities, and the treatment given here is appli-
cable to P, SV, and SH waves separately.

The expressions above must be multiplied with the
appropriate vector spherical harmonic (2)-(4) to obtain
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the full focused wavefield. For each wave type, a differ-
ent spherical harmonic must be multiplied to charac-
terize the wavefield. Additionally, in equations (2)-(4),
the vector spherical harmonics are summed over the an-
gular order l and degree m which captures the imprint
of the source properties on each wave type. Therefore,
each wave has its own dependence on the angles and on
space and time.

If one were to use one component of the motion,
such as the x-component, the source properties for the
different wave types are superposed on each other. Since
for a fixed source mechanism the radiation pattern of P
and S waves are different, the focused wavefields do not
provide clear information about the source mechanism.
In order to avoid mixing of P- and S- radiated waves,
one must decompose the wavefield using the divergence
and curl in order to investigate the focus of each wave
type (P and S) separately.

If one does not have a perfect aperture, a blurred
focus will occur, and the focus can not be characterized
by one angular degree l but by the superposition of dif-
ferent angular degrees l. This is important to describe
the spatial focus achieved in our numerical modeling.

4 NUMERICAL EXAMPLE

We illustrate the theory with a numerical example. We
use the velocity model shown in the top panel of Figure
1 to propagate the source wavefield to the receivers. The
model consists of horizontally continuous layers whose
P-wave velocities range from approximately 4.7 km/s
to 5.9 km/s and S-wave velocities range from approx-
imately 2.3 km/s to 2.9 km/s. In practice, one does
not know the true velocity model. For this reason, we
used the smoothed velocity model, shown in the bottom
panel of Figure 1, for the back-propagation. The velocity
model is smoothed by using a two-dimensional triangle
smoothing of the slowness with a smoothing radius of
.185 km in the x and z directions (Fomel, 2007). This
smoothed velocity model has the same mean slowness
as the correct velocity model.

We use a horizontal point force located at (x, z)
= (0.51 km, 2.68 km). The source is characterized by
Ricker wavelet with dominant frequency of 100 Hz.
There are 56 receivers distributed over 2 vertical bore-
holes in our model. The x-locations of the receiver bore-
holes are 0.74 km and 0.88 km respectively. The re-
ceivers range from a depth of 2.36 km to 2.86 km with
a spacing of 18.5 m.

5 HORIZONTAL POINT FORCE

This section describes the numerical modeling that
demonstrates that improved temporal focusing leads to
improved spatial focusing for each wave type. We first

Figure 1. P-wave velocity models of the numerical exper-

iment with units of km/s. Top panel indicates the correct
velocity model and represents the velocity model used to

propagate the source wavefield through the medium. Bot-
tom panel indicates the smoothed velocity model with cor-

rect mean slowness. This model is used for back-propagation

of the time reversed signal and optimized inverse signal. The
plus symbols represent the receivers, the circular dot repre-

sents the source. The S-wave velocity was the same but had

velocities values equal to half of the P-wave velocity.

model the wavefield due to a horizontal point force exci-
tation at the source location. The horizontal and verti-
cal displacements of the wavefield are then recorded at
each receiver. Afterwards, we apply either time reversal
or deconvolution to the recorded signals to generate the
wavefields which are back-propagated.

We use the time reversed or deconvolved signals to
excite waves that backpropagate through the smoothed
velocity model, using the following forces acting at each
of the receiver locations,

~FTimeReverse = (Ux(−t), Uz(−t))), (30)

~FDeconv = (UInverse
x (t), U inverse

z (t)) . (31)

Here, ~FTimeReverse and ~FDeconv are the source func-
tions for time reversal and deconvolution respectively,
and Ux(t) and Uz(t) are the recorded signals. The in-
verse signal of a time series g(t) is defined as,

ginverse(t) ? g(t) = δ(t). (32)

where ? denotes convolution. In order to solve for
ginverse(t) and avoid instability for ginverse(ω) when
g(ω) = 0, we have apply a water level regularization.
Thus,
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P, TR 

P, DC 

P 

Figure 2. Decomposed P wavefield at time of focus due to
horizontal point force. Top panel is P-wave just after the

horizontal point force is emitted. Middle panel indicates the

result of injecting the time reversed signal back into the
smoothed velocity model from the receiver locations. Bottom

panel shows result of injecting the inverse signal calculated

using deconvolution back into the smoothed velocity model
from the receiver locations.

ginverse(ω) =
1

g(ω)
⇒ g∗(ω)

|g∗(ω)|2 + ε
. (33)

The derivation and explanation of these two methods
are discussed in more detail by Douma et al. (2013).

After backpropagation, the wavefield is decom-
posed into P and S components for a crucial reason.
We demonstrated in the theory section that improved
temporal focusing leads to improved spatial focusing for
each wave type. We do not consider the focus for the
vertical or horizontal displacements. Rather, we use the
displacement components to calculate the P and S wave-
fields using divergence and curl, respectively. This allows
us to retrieve the P and S waves that have backpropa-
gated from the sources. For each wave type, our theory
predicts that an improved temporal focusing leads to
improved spatial focusing.

S, TR 

S, DC 

S 

Figure 3. Decomposed S wavefield at time of focus due to
horizontal point force. Top panel is S-wave just after the

horizontal point force is emitted. Middle panel indicates the

result of injecting the time reversed signal back into the
smoothed velocity model from the receiver locations. Bottom

panel shows result of injecting the inverse signal calculated

using deconvolution back into the smoothed velocity model
from the receiver locations.

We first model the wavefield due to a horizontal
point force excitation at the source location. The top
panel of Figures 2 and 3 show the P and S wavefields’
radiation pattern just after the horizontal point force is
emitted and represent a pure angular degree l = 1. In
perfect source imaging, we would reconstruct these ra-
diation patterns. However, our aperature is not perfect
and we backpropagate through a smoother version of
the velocity model. Thus, we do not expect to be able
to reconstruct these radiation patterns perfectly.

In order to show that deconvolution generates an
improved spatial focus, we first demonstrate that de-
convolution enhances the temporal focus. Thus, we cal-
culate the temporal focusing for the P and S component
as a result of deconvolution (equation (31)) compared
with time reversal (equation (30)). We defined the tem-
poral focusing in equation (16) as the l-th derivative of
the incoming wavefield. This is necessary because the
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wavefield is zero at our source location due of nodal
lines. In order to demonstrate improved temporal focus-
ing for a horizontal point force, we take the derivative
of the P wavefield in the x-direction and the deriva-
tive of the S-wavefield in the z-direction because these
derivatives are the radial derivatives perpendicular to
the nodal lines for each wave type. We change the di-
rection of the derivative because the radiation pattern of
the P-wave due to a horizontal point force is a dipole in
the x-direction while the S-wave radiation has a dipole
pattern oriented in the z-direction (Aki and Richards,
2002). This is visible in the top panel of Figures 2 and
3, which show the radiation patterns of the P and S
wavefields just after the source has acted. We calculate
the derivatives as defined above to show the temporal
focus for the P and S wave at the source location. Com-
paring Figure 4(a) to 4(b), one can clearly note that
deconvolution has significantly improved the temporal
focusing compared to time reversal for the P-wave. In
contrast, Figures 4(c) and (d) show that both time re-
versal and deconvolution produce a similar temporal fo-
cus for the S wave. Because improved temporal focus-
ing implies better spatial focusing, see equation (26),
one would expect to see an improved spatial focus im-
proved for the P-wave using deconvolution compared to
using time reversal. Additionally, we don’t expect the
S-wave’s spatial focus to improve using deconvolution
because the temporal focus did not improve.

After having demonstrated that deconvolution im-
proved the temporal focusing for the P wave, we com-
pare the spatial focus generated by deconvolution and
time reversal for each wave type. The backpropagated
wavefields at t = 0 for the two methods are shown in
the middle and bottom panels of Figure 2 and 3. The
middle panel of Figure 2 represents the spatial focus
of the P wave using time reversal whereas the bottom
panel shows the spatial focus of the P wave using time-
reversal. Figure 2 shows that deconvolution drastically
improves the spatial focus compared to deconvolution.
Figure 3 does not show a clear improvement of spatial
focusing between time reversal (middle panel) and de-
convolution (bottom panel) for the S component. This
was expected due to deconvolution and time reversal
producing similar temporal focuses for the S- wave.

The aperture, over which we record the data that
we back-propagate, is not perfect. This causes the spa-
tial focuses, created using time reversal and deconvolu-
tion shown in Figures 2 and 3, to not be confined to one
angular degree l because the spatial focuses are blurred
in the z-direction. A perfect spatial focus would consist
of only the l = 1 component. Figure 5 (a)-(b) and (c)-(d)
shows cross sections of the backpropagated wavefields in
Figures 2 and 3 in the x and z directions, respectively,
so that it is easier to asses the improvements and com-
parisons between the two methods. Note that the scales
of the horizontal axis for Figure 5 (a)-(b) are different
from Figure 5 (c)-(d). Figure 5(a) demonstrates that

P, TR P, DC 

S, TR S, DC 

Figure 4. Temporal focused images due to a horizontal point
force produced by back-propagating the calculated time re-

versed signals using time reversal and deconvolution for ver-

tical borehole array. Part (a) and (b) are temporal focus of
the P wave due to time reversal and deconvolution respec-

tively. Part (c) and (d) are temporal focus of the S wave due
to time reversal and deconvolution respectively.

P, TR P, DC 

S, TR S, DC 

Figure 5. Spatial focused images due to a horizontal point

force produced by back-propagating the calculated time re-
versed signals using time reversal and deconvolution. Part
(a) and (b) are 1D slices of figure 2 through depth 2.68 km.

Part (c) and (d) are 1D slices of figure 3 through x location
.51km. Note the different scales used for the cross-section in

the x and z direction.

time reversal is not able to create a well defined dipole
focus in the x-direction which represents the radiation
pattern of a P wave due to a horizontal point force. Fig-
ure 5(b) shows that deconvolution is able to reconstruct
the dipole radiation pattern of the P wave due to a hori-
zontal point force. Figure 5(c) and (d) demonstrate that
there seems to be no significant difference between time
reversal (c) and deconvolution (d) to reconstruct the S
wave’s rfocus.

Our numerical results have shown that deconvolu-
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tion was able to improve the temporal focus for the P
wave which led to an improved reconstruction of the
P-wavefield’s radiation pattern. However, deconvolution
was not able to improve the temporal focus for the S-
wave, due to a horizontal point force, which led to it also
not improving the reconstruction of the S-wavefield’s ra-
diation pattern. This can be attributed to the fact that
a nodal line for the S-wavefield’s radiation pattern inter-
sects the receiver array. Deconvolution will then apply
a larger weight to the receivers near the nodal line in
order to increase a weak recorded signal. This is unphys-
ical because there is no information to be gained in these
weak recorded waveforms near the nodal lines. These re-
ceivers are supposed to record no information about the
source and should, therefore, not propagate any infor-
mation back. However, it simultaneously demonstrates
the robust nature of deconvolution. For the radiation
pattern which has a nodal line intersecting the receiver
array, deconvolution does not generate an inaccurate
but rather a comparable reconstruction of the radiation
pattern as time reversal.

We conclude that, for an elastic media without a
perfect aperture and true velocity model, improved tem-
poral focusing leads to improved spatial focusing. We
have shown this both theoretically and numerically to
be the case. Because deconvolution has the ability to im-
prove the temporal focusing, one can improve the spatial
focusing.

6 CONCLUSION

We have introduced deconvolution which improves the
temporal focusing of microseismic events. We demon-
strated theoretically and numerically that this improved
temporal focusing leads to improved spatial focusing for
each wave type in an elastic medium. This improved
spatial focusing is beneficial for enhancing the focus of
the elastic waves. The simplicity and robust nature of
this method allows for a simple incorporation into ex-
isting reverse-time imaging methods. Additionally, the
cost of deconvolution is minimal compared to running
the finite difference modeling. Therefore, it can be added
as a preprocessing step without significant additive cost.

7 ACKNOWLEDGMENT

We thank sponsor companies of the Consortium
Project whose support made this research pos-
sible. The numerical examples in this paper
use the madagascar package freely available at
http://reproducibility.org/wiki/Main Page.

REFERENCES

Aki, K., and P. Richards, 2002, Quantitative seismol-
ogy, second ed.: Univ. Science Books.

Arfken, G., and H. Weber, 2001, Mathematical meth-
ods for physicists, 5th ed.: Harcourt.

Artman, B., I. Podladtchikov, and B. Witten, 2010,
Source location using time-reverse imaging: Geophys-
ical Prospecting, 58, 861–873.

Aubry, J.-F., M. Tanter, J. Gerber, J.-L. Thomas,
and M. Fink, 2001, Optimal focusing by spatio-
temporal filter. II. Experiments. Application to fo-
cusing through absorbing and reverberating media:
J. Acoust. Soc. Am., 110, 48–58.

Bancroft, J., J. Wong, and L. Han, 2010, Sensitiv-
ity measurements for locating microseismic events:
CSEG Recorder, 28–37.

Bertaix, V., J. Garson, N. Quieffin, S. Catheline, J.
Derosny, and M. Fink, 2004, Time-reversal breaking
of acoustic waves in a cavity: American Journal of
Physics, 72, 1308–1311.

Bose, S., H. Valero, Q. Liu, R. G. Shenoy, and A.
Ounadjela, 2009, An Automatic Procedure to Detect
Microseismic Events Embedded in High Noise: SEG
Technical Program Expanded Abstracts, 1537–1541.

Chapman, C., 2004, Fundamentals of seismic wave
propagation: Cambridge Univ. Press.

Douma, J., R. Snieder, A. Fish, P. Sava, and W. Phe-
nomena, 2013, Locating a microseismic event using
deconvolution: Proceedings of the 83rd Annual Inter-
national Meeting, Society of Exploration Geophysi-
cists., 2206–2211.

Duncan, P., 2005, Is there a future for passive seismic?:
First Break, 23, 111–115.

Fink, M., 1997, Time reversed acoustics: Physics To-
day, 50, 34–40.

Fomel, S., 2007, Shaping regularization in geophysical-
estimation problems: Geophysics, 72, R29–R36.

Foulger, G., and B. R. Julian, 2012, Earthquakes
and errors: Methods for industrial applications: Geo-
physics, 76, WC5–WC15.

Gallot, T., S. Catheline, P. Roux, and M. Campillo,
2011, A passive inverse filter for Green’s function re-
trieval: J. Acoust. Soc. Am., 131, EL21–EL27.

Hayles, K., R. L. Horine, S. Checkles, J. P. Blangy,
and H. Corporation, 2011, Comparison of microseis-
mic results from the Bakken Formation processed by
three different companies: Integration with surface
seismic and pumping data: SEG Technical Program
Expanded Abstracts, 1468–1472.

Jonsson, B. L. G., M. Gustafsson, V. H. Weston, and
M. V. d. Hoop, 2004, Retrofocusing of acoustic wave
fields by iterated time reversal: SIAM J. Appl. Math.,
64, 1954–1986.

Kendall, M., S. Maxwell, G. Foulger, L. Eisner, and
Z. Lawrence, 2011, Special Section Microseismicity :
Beyond dots in a box Introduction: Geophysics, 76,
WC1–WC33.



Focusing of elastic waves for microseismic imaging 37

Kummerow, J., 2010, Using the value of the crosscorre-
lation coefficient to locate microseismic events: Geo-
physics, 75, MA47–MA52.

Larmat, C., R. Guyer, and P. Johnson, 2010, Time-
reversal methods in geophysics: Physics Today, 63,
31–35.

Larmat, C., J. Montagner, M. Fink, Y. Capdeville, A.
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Zhang, 2010, An improved method for hydrofracture-
induced microseismic event detection and phase pick-
ing: Geophysics, 75, A47–A52.

Steiner, B., E. H. Saenger, and S. M. Schmalholz,
2008, Time reverse modeling of low-frequency mi-
crotremors: Application to hydrocarbon reservoir lo-
calization: Geophysical Research Letters, 35, L03307.

Tanter, M., J.-F. Aubry, J. Gerber, J.-L. Thomas, and
M. Fink, 2001, Optimal focusing by spatio-temporal
filter. I. Basic principles: J. Acoust. Soc. Am., 110,
37–47.

Tanter, M., J.-L. Thomas, and M. Fink, 2000, Time
reversal and the inverse filter: J. Acoust. Soc. Am.,
108, 223–234.

Ulrich, T., J. Douma, B. Anderson, and R. Snieder,
currently under review, 2013, Improving spatio-
temporal focusing and source reconstruction through
deconvolution: Wave Motion.

Vignon, F., J.-F. Aubry, A. Saez, M. Tanter, D.
Cassereau, G. Montaldo, and M. Fink, 2006, The
Stokes relations linking time reversal and the inverse
filter: J. Acoust. Soc. Am., 119, 1335–1346.

Wu, R.S.and Ben-Menahem, A., 1985, The elastody-
namic near field: Geophys. J.R. Astron. Soc., 81, 609–

622.



38 Johannes Douma and Roel Snieder


