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ABSTRACT

Anisotropic attenuation may strongly influence the energy distribution along
the wavefront, which has serious implications for AVO (amplitude-variation-
with-offset) analysis and amplitude-preserving migration. Here, we present an
asymptotic (far-field) study of 2D radiation patterns for media with anisotropic
velocity and attenuation functions.
An important parameter for wave propagation in attenuative media is the an-
gle between the wave and attenuation vectors, which is called the “inhomo-
geneity angle.” Application of saddle-point integration helps us to evaluate the
inhomogeneity angle and test the common assumption of “homogeneous” wave
propagation that ignores the misalignment of the wave and attenuation vec-
tors. For transversely isotropic media, the inhomogeneity angle vanishes in the
symmetry directions and remains small if the model has weak attenuation and
weak velocity and attenuation anisotropy. However, reflection and transmission
at medium interfaces can substantially increase the inhomogeneity angle, which
has an impact on both the attenuation coefficients and radiation patterns. Nu-
merical analysis indicates that the attenuation vector deviates from the wave
vector in the direction of increasing attenuation.
The combined influence of angle-dependent velocity and attenuation results in
pronounced distortions of radiation patterns, with the contribution of atten-
uation anisotropy rapidly increasing as the wave propagates away the source.
Our asymptotic solution also helps to establish the relationships between the
phase and group parameters when wave propagation cannot be treated as ho-
mogeneous. Whereas the phase and group velocities are almost independent
of attenuation, the inhomogeneity angle has to be taken into account in the
relationship between the phase and group attenuation coefficients.

Key words: attenuation, attenuation anisotropy, point-source radiation, in-
homogeneity angle, group attenuation, transverse isotropy

1 INTRODUCTION

Directional variation of attenuation, along with that of
velocity, influence the amplitudes and polarizations of
seismic waves. In particular, attenuation anisotropy may
strongly distort radiation patterns and, therefore, the
results of amplitude-variation-with-offset (AVO) analy-
sis.

To analyze wave propagation in attenuative media,
both the stiffness coefficients and the wave vector have

to be treated as complex quantities. In the presence of
attenuation, the directions of the real and imaginary
parts of the wave vector k generally differ from each
other, which means that the planes of constant phase
and constant amplitude do not coincide (Borcherdt and
Wennerberg, 1985; Borcherdt et al., 1986; Krebes and
Slawinski, 1991; Krebes and Le, 1994). The angle be-
tween the real and imaginary parts of k is called the
“inhomogeneity angle”. For plane waves in attenuative
media, a wide range of values of inhomogeneity angle
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satisfy the Christoffel equation, except for certain “for-
bidden” directions (Krebes and Le, 1994; Carcione and
Cavallini, 1995; Červený and Pšenč́ık, 2005). To avoid
complications associated with the inhomogeneity angle,
wave propagation is often treated as “homogeneous”,
which implies that the real and imaginary parts of the
wave vector are parallel to each other (e.g., Zhu and
Tsvankin, 2006).

Because different choices of the inhomogeneity an-
gle yield different plane-wave properties, the inhomo-
geneity angle is an important free parameter for plane-
wave propagation. The energy (hence the attenuation
behavior) of a wave excited by a seismic source, how-
ever, is determined by the boundary conditions, so the
inhomogeneity angle is constrained as well. For reflected
and transmitted waves, the inhomogeneity angle can be
found from Snell’s law, which requires that the projec-
tion of the complex wave vector onto the interface is pre-
served (e.g., Hearn and Krebes, 1990; Carcione, 2001).

Point-source radiation patterns in elastic
anisotropic media, based on high-frequency asymp-
totics, have been extensively discussed in the literature
(e.g., Tsvankin and Chesnokov, 1990; Gajewski, 1993).
Hearn and Krebes (1990) describe ray tracing for
inhomogeneous wave propagation in a medium con-
sisting of a stack of isotropic attenuative layers, with
the inhomogeneity angle obtained by the method of
steepest descent for the stationary rays (i.e, the rays
that satisfy Fermat’s principle). Krebes and Slawinski
(1991) find that method more accurate than an alterna-
tive approach that assigns parameters for the initial ray
segment emerging from the source in a non-attenuative
region.

In this paper, we extend the steepest descent
method to wavefields from seismic sources in 2D homo-
geneous media with anisotropic velocity and attenuation
functions. To evaluate the far-field displacement repre-
sented with a contour integral, we apply the saddle-
point condition to the phase function expressed through
the polar angle. This asymptotic solution and numeri-
cal examples allow us to evaluate the magnitude of the
inhomogeneity angle and its influence on the radiation
patterns and phase and group attenuation coefficients.

2 INHOMOGENEITY ANGLE

The wavefield in 2D attenuative anisotropic media can
be represented through an integral in the frequency-
wavenumber domain (equation A2). In the high-
frequency limit, this integral can be evaluated using the
steepest-descent method. In the polar coordinate sys-
tem, the saddle-point condition for the phase function
(equation A7) yields a complex value θ̃s of the polar an-
gle (the˜sign denotes a complex value). The expression
for the saddle point θ̃s (equation A8) is a generalization
of the corresponding elastic case; the real-valued polar

angle and slowness are replaced by their complex coun-
terparts. Thereafter, we will call the imaginary part of
the wave vector k the attenuation vector, and the real
part of k simply the wave vector. The wave vector and
attenuation vector are then determined from θ̃s and the
complex slowness p̃s. The latter is obtained from the
Christoffel equation for attenuative media.

Note that neither the real nor imaginary part of θ̃s

is the angle of either the wave vector or the attenuation
vector. Similarly, neither the real nor imaginary part of
p̃s is the magnitude of either the wave vector or the at-
tenuation vector. The angle and magnitude of both the
wave vector and the attenuation vector can be obtained
from θ̃s and p̃s in the following way.

We denote the magnitude of the real-valued slow-

ness vector by p =
k

ω
and the magnitude of the

frequency-normalized attenuation vector by pI =
kI

ω
,

where ω is the angular frequency, k = |k| is the magni-
tude of the wave vector k, and kI =

˛

˛kI
˛

˛ is the magni-

tude of the attenuation vector kI . The components of
p̃s are then rewritten as

p̃1 = p sin θ + ipI sin θI ; p̃3 = p cos θ + ipI cos θI , (1)

where θ and θI are the angles between vertical and the
wave and attenuation vectors, respectively. Jointly solv-
ing equations 1 and A9 yields

p = ±

q

p2
s cosh2 θI

s + (pI
s)2 sinh2 θI

s , (2)

pI = ±
q

(pI
s)2 cosh2 θI

s + p2
s sinh2 θI

s , (3)

tan θ =
ps sin θs cosh θI

s − pI
s cos θs sinh θI

s

ps cos θs cosh θI
s + pI

s sin θs sinh θI
s

, (4)

tan θI =
pI

s sin θs cosh θI
s + ps cos θs sinh θI

s

pI
s cos θs cosh θI

s − ps sin θs sinh θI
s

, (5)

where ps = Re[p̃s], p
I
s = Im[p̃s], θs = Re[θ̃s], and θI

s =
Im[θ̃s]. The inhomogeneity angle is then given by θI −θ.
For elastic media, both p̃s and θ̃s become real values and
equations 4 and 5 yield θI − θ = 90◦.

When the medium is not just attenuative, but also
anisotropic, the complex slowness varies with respect to

the complex polar angle at the saddle point (
dp̃s

dθ

˛

˛

˛

˛

θ=θ̃s

6=

0). If the medium is homogeneous and isotropic for both
velocity and attenuation, equation A8 has a real-valued
solution

θ̃s =
x1

x3
, (6)

so that θs =
x1

x3
and θI

s = 0. We then find from equa-

tions 4 and 5 that θ = θI = θs, which implies the inho-
mogeneity angle in homogeneous media with isotropic
velocity and attenuation is always zero.
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3 VTI MEDIA WITH VTI ATTENUATION

3.1 SH-waves

For attenuative media with an anisotropic velocity func-
tion, the inhomogeneity angle generally does not vanish.
The exact saddle-point condition for SH-waves in VTI
(transverse isotropy with a vertical symmetry axis) me-
dia with VTI attenuation takes the form

tan θ̃s =
x1

x3(1 + 2γ)

1 −
i

Q55

1 − i
1 + γ

Q

Q55

, (7)

where γ
Q

is the SH-wave attenuation-anisotropy param-
eter (equation B3). Clearly, γ

Q
= 0 yields a real-valued

θ̃s and results in homogeneous wave propagation. Equa-
tion 7 (as well as equations 11 and 12 below) shows that
the imaginary part of θ̃s is generally a small quantity
proportional to the inverse Q factor.

Using equations A9, 1, and 7, we find for the inho-
mogeneity angle of the SH-wave:

sin θ cos θ + A2
SH sin θI cos θI

= ASH sin(θI − θ)
1 − (1 + γ

Q
)/Q2

55

γ
Q
/Q55

, (8)

where the normalized phase attenuation coefficient A ≡
kI

k
=

pI

p
itself is a function of inhomogeneity angle

(Zhu and Tsvankin, 2006). For weakly attenuative me-
dia (1/Q55 � 1) with weak velocity and attenuation
anisotropy (|γ| � 1 and

˛

˛γ
Q

˛

˛ � 1), the inhomogeneity
angle can be simplified by dropping all quadratic terms
in Q55, γ, and γ

Q
:

θI − θ = tan−1
`

γ
Q

sin 2θ
´

. (9)

The largest inhomogeneity angle occurs at, e.g., θ = 45◦.
Note that the sign of the inhomogeneity angle is gov-
erned by the attenuation-anisotropy parameter γ

Q
and

the phase angle θ. For example, positive γ
Q

yields posi-
tive inhomogeneity angles for 0◦ < θ < 90◦, while nega-
tive γ

Q
produces negative inhomogeneity angles. Anal-

ysis of the sign of θI − θ for the whole range of phase
directions reveals that the attenuation vector of the SH-
wave deviates toward higher-attenuation directions.

Equation 9 also shows that for weak attenuation
anisotropy (

˛

˛γ
Q

˛

˛� 1), the inhomogeneity angle for SH-
waves is small. Then the SH-wave attenuation can be
approximately found using the expression for homoge-
neous wave propagation (Zhu and Tsvankin, 2006):

ASH ≈
1

2Q55
(1 + γ

Q
sin2 θ) . (10)

3.2 P- and SV-waves

The saddle point θ̃s for P- and SV-waves in VTI media
with VTI attenuation has a more complicated form. In

the limit of weak attenuation and weak anisotropy for
both velocity and attenuation, the saddle-point condi-
tion for P-waves can be simplified by dropping quadratic
terms in 1/Q33, 1/Q55, ε, δ, εQ

, and δ
Q

(equations B1
and B2):

tan θ̃s =
x1

x3

h

1 − 2ε + 2(ε− δ) cos 2θ̃s

+ i
ε

Q
− (ε

Q
− δ

Q
) cos 2θ̃s

Q33

#

, (11)

where ε
Q

and δ
Q

are the attenuation-anisotropy param-
eters for P- and SV-waves (equations B1 and B2). The
corresponding expression for SV-waves is

tan θ̃s =
x1

x3

 

1 − 2σ cos 2θ̃s + i
σ

Q
cos 2θ̃s

Q55

!

, (12)

where σ ≡
ε− δ

g
is the velocity-anisotropy parame-

ter for SV-waves and g ≡
c55
c33

. Another parameter,

σ
Q
≡

2(1 − g
Q

)σ

g
Q

+
ε

Q
− δ

Q

gg
Q

, where g
Q

=
Q33

Q55
, governs

SV-wave attenuation anisotropy (Zhu and Tsvankin,
2006). It is noteworthy that the condition for SV-waves
(equation 12) can be obtained directly from that for P-
waves using the following substitutions: ε → 0, δ → σ,
ε

Q
→ 0, δ

Q
→ σ

Q
, and Q33 → Q55.

Although the imaginary terms
"

i
ε

Q
− (ε

Q
− δ

Q
) cos 2θ̃s

Q33

#

in equation 11 and

 

i
σ

Q
cos 2θ̃s

Q55

!

in equation 12 involve only attenuation-

anisotropy parameters, the dependence of θ̃s on the real
terms makes θI

s = Im[θ̃s] a function of the anisotropy
parameters for both velocity and attenuation. The angle
θ̃s for P- and SV-waves is real only when the imaginary
terms in equations 11 and 12, respectively, are equal
to zero. For P-waves, this requires that the normalized
attenuation coefficient be isotropic (ε

Q
= δ

Q
= 0).

SV-wave propagation becomes homogeneous if the
normalized attenuation coefficient is elliptical (σ

Q
= 0).

For general attenuative VTI models, θ̃s in equations 11
and 12 can be calculated in iterative fashion. The inho-
mogeneity angle is then obtained from equations 2–5,
as illustrated by numerical examples below.

3.3 Numerical examples

To evaluate the magnitude of the inhomogeneity angle
for homogeneous attenuative VTI media, we use models
1 and 2 from Table 1. Figure 1 displays the wave vec-
tor k (thin arrows) and the attenuation vector kI (thick
arrows) for models 1 and 2. Both k and kI are calcu-
lated with a constant increment in the group angle and
displayed on the group-velocity curves (wavefronts). No-
tice that the wave vector remains perpendicular to the
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Figure 1. Polar plots of the wave vector k (thin black arrows) and the attenuation vector kI (thick gray arrows) associated
with the group-velocity curves (dashed) of P- and SV-waves for two VTI models from Table 1: a) model 1; b) model 2.
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Figure 2. Exact inhomogeneity angles of P- and SV-waves for a) model 1; and b) model 2.

Model # ε δ ε
Q

δ
Q

1 0.1 0.05 -0.2 -0.1

2 0.4 0.25 -0.45 -0.5

3 0.1 0.05 0 0

4 0.4 0.25 0 0

5 0 0 -0.2 -0.1

6 0 0 -0.45 -0.5

Table 1. Attenuative VTI models with VP0 = 3 km/s, VS0 =
1.5 km/s, ρ = 2.4 g/cm3, Q33 = 100, and Q55 = 60.

wavefront since the influence of the attenuation on the
velocity function is of the second order. The attenuation
vector, however, deviates from the normal to the wave-
front because of the combined influence of the velocity

and attenuation anisotropy. The angle between the wave
vector and the corresponding attenuation vector is equal
to the inhomogeneity angle. Evidently, the inhomogene-
ity angle does not vanish away from the symmetry axis
and isotropy plane.

The exact inhomogeneity angle computed from
equation A8 is shown in Figure 2. For model 1, the inho-
mogeneity angles for both P- and SV-waves are less than
15◦ (Figure 2a). Since model 2 has stronger anisotropy
for both velocity and attenuation, the inhomogeneity
angles for it is larger (Figure 2b). For 2D homogeneous
VTI model, the inhomogeneity angle always vanishes in
the symmetry directions (0◦ and 90◦). Figure 2b also
shows that the inhomogeneity angle for SV-waves in
model 2 changes rapidly near the velocity maximum
at 45◦, where the SV-wave wavefront becomes almost
rhomb-shaped due to the large value of σ = 0.6.

Both models have negative ε
Q

and δ
Q

, which im-
plies that the normalized attenuation for P-waves de-
creases monotonically from the vertical toward the hori-
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Figure 3. Comparison of the exact and approximate inho-
mogeneity angles for P-waves in model 1.

zontal direction. The P-wave attenuation vectors in Fig-
ure 1 are closer to the vertical direction than are the
associated wave vectors. For SV-waves the attenuation
vectors in model 2 deviate from the associated wave
vectors toward the vertical in the range 0◦ − 40◦, where
the attenuation coefficient decreases with the angle. For
group angles between 50◦ and 90◦, the opposite is true.
This example, along with other numerical tests, suggests
that the attenuation vector deviates from the wave vec-
tor toward the directions of increasing attenuation.

To test the accuracy of the approximate saddle-
point condition for P-waves (equation 11), we compared
it with the exact solution (Figure 3). The approxima-
tion generally provides sufficient accuracy, except for the

directions where the term
dp̃s

dθ

˛

˛

˛

˛

θ=θ̃s

in equation A8 be-

comes relatively large. The overall error, however, does
not exceed 4◦ because of the weak velocity and attenu-
ation anisotropy for this model. Predictably, increasing
the anisotropy for either the velocity or attenuation re-
duces the accuracy of the approximate solution.

4 RADIATION PATTERNS

Consider the wavefield from a line source in 2D attenu-
ative anisotropic media described in the [x1, x3]-plane,
where the source array function is independent of the
x2 coordinate. The spectrum of the particle displace-
ment in the high-frequency limit, given in Appendix A,
is similar to that for elastic media, but the slowness
and stationary polar angle are complex. According to
equation A12, anisotropic attenuation alters the radia-
tion patterns through the geometrical spreading factor
in the denominator and an exponential decaying term.

The influence of attenuation on the real and imag-
inary parts of the slowness p̃s is of the second and first
order, respectively, in the inverse Q factors. As a re-
sult, the geometrical spreading factor depends only on

quadratic and higher-order terms in the inverse Q com-
ponents.

4.1 Phase and group properties

The contribution of attenuation to the radiation pat-
tern is mostly contained in the exponentially decaying
term exp[−ωpI(sin θIx1 +cos θIx3)] (equation A12). By
analyzing this exponential term, we obtain the general
relationship between the phase and group velocities as
well as that between the phase- and group-attenuation
coefficients:

VG =
ω

ks cos(φ− θs) cosh θI
s − kI

s sin(φ− θs) sinh θI
s

, (13)

kI

G
= ks sin(φ− θs) sinh θI

s + kI
s cos(φ− θs) cosh θI

s , (14)

where ks = ω/ps, k
I
s = ω/pI

s, and φ is the group angle.
For homogeneous wave propagation (θI

s = 0), the
phase angle θ = θs (equation 4) and the real slowness
p = ps (equation 2). Hence, equations 13 and 14 reduces
to (Zhu and Tsvankin, 2004)

VG =
V

cos(φ− θ)
, (15)

kI

G
= kI cos(φ− θ) , (16)

where V = ω/k is the phase velocity. Hence, the group
attenuation coefficient for homogeneous wave propaga-
tion is equal to the phase attenuation coefficient mul-
tiplied (rather than divided, as is the case for phase
velocity) by the cosine of the angle between the phase
and group directions. If both functions are isotropic, the
phase direction is identical to the corresponding group
direction, and there is no difference between the phase
and group quantities.

Since both kI
s and θI

s are relatively small quantities
proportional to the inverse Q factor, the influence of the
inhomogeneity angle on the group velocity is of the sec-
ond order in the inverse Q and can be ignored. Hence,
equation 15 for the group velocity remains accurate for
any value of the inhomogeneity angle. The influence of
the inhomogeneity angle on the group attenuation co-
efficient, however, is of the first order in the inverse Q
and can be significant.

4.2 Numerical examples

To examine the influence of the inhomogeneity angle
on the radiation patterns and the angular variation of
the phase and group attenuation coefficients as well as
radiation patterns, we use VTI models from Table 1.

The contribution of the inhomogeneity angle to the
P-wave attenuation coefficient is illustrated in Figure 4.
The solid curves are calculated using the inhomogene-
ity angles obtained from Figure 2, while the dashed
curves correspond to homogeneous wave propagation
(i.e., zero inhomogeneity angle). Since model 1 is weakly
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anisotropic for both velocity and attenuation, the inho-
mogeneity angle is relatively small and has a small im-
pact on attenuation coefficients (Figure 4a). In contrast,
the larger inhomogeneity angles for model 2 result in a
more pronounced error in the attenuation coefficients
computed for homogeneous wave propagation.

The group attenuation coefficient is also influenced
by the inhomogeneity angle (Figure 5). For model 2, the
attenuation coefficient computed with the actual inho-
mogeneity angle (equation 14) deviates by up to 20%
from that for homogeneous wave propagation (equa-
tion 16).

To analyze the radiation patterns in the presence
of attenuation anisotropy, we compute the particle dis-
placement of P- and SV-waves from a vertical sin-
gle force for models 1 and 2 (Figure 6). The stronger
anisotropy for both velocity and attenuation in model
2 creates a more pronounced directional dependence of
the radiation patterns compared to that in model 1.

Since both models have the same Q33 and Q55 val-
ues, the vertical attenuation coefficients are also the
same. However, the difference between the parameter

δ in the two models changes the term
d2p̃s

dθ2

˛

˛

˛

˛

θ=θ̃s

in

equation A12 and, therefore, the magnitude of the par-
ticle displacement in the vertical symmetry direction
(Tsvankin, 2005). Although the attenuation-anisotropy

parameter δ
Q

also contributes to the term
d2p̃s

dθ2

˛

˛

˛

˛

θ=θ̃s

,

its influence on the geometrical-spreading factor in the
symmetry direction is practically negligible.

To understand the relative influence of the veloc-
ity and attenuation anisotropy on the radiation pat-
terns, we compare the particle displacement of P- and
SV-waves excited by the same vertical single force in
models 3–6 from Table 1. The directional dependence
of the radiation patterns for both P- and SV-waves re-
mains pronounced even without attenuation anisotropy
(Figures 7, solid curves). The radiation patterns deviate
significantly from the reference isotropic values, espe-
cially for model 4 that has a particularly strong veloc-
ity anisotropy. A more detailed analysis of the P- and
SV-wave radiation patterns in TI media can be found in
Tsvankin (2005, chapter 2). The directional dependence
of the radiation patterns becomes much less pronounced
in the absence of velocity anisotropy (Figures 7, dashed
curves).

Our numerical analysis confirms the well-known
fact that the influence of velocity anisotropy on radi-
ation patterns remains almost the same for different
source-receiver distances. In contrast, the distortions of
the radiation patterns caused by attenuation anisotropy
become much more pronounced with distance because
the decaying term exp[−ωpI(sin θIx1 + cos θIx3)] in
equation A12 varies with the spatial coordinates (com-
pare the dashed curves in Figure 7c,d and Figure 8).

5 DISCUSSION AND CONCLUSIONS

Wave propagation in attenuative media is generally “in-
homogeneous”, which means that the direction of the
wave vector deviates from that of the attenuation vec-
tor. The angle between these two vectors (the “inho-
mogeneity angle”) plays an essential role in wavefield
simulation for attenuative media, especially if the ve-
locity and attenuation functions are anisotropic. Here,
we analyze the inhomogeneity angle in the far field of a
line source (i.e., independent of x2 direction) by apply-
ing the saddle-point (stationary-phase) condition to the
plane-wave decomposition of the wavefield.

The discussion is largely devoted to homogeneous
media with constant velocity and attenuation, where
the inhomogeneity angle can be studied analytically. Al-
though the inhomogeneity angle vanishes only in the
symmetry directions, its magnitude is relatively small
for weakly attenuative media with weak anisotropy for
both velocity and attenuation. Therefore, for such mod-
els the attenuation coefficient can be computed under
the simplifying assumption of homogeneous wave prop-
agation. Our analysis for media with VTI symmetry for
both velocity and attenuation also shows that the phase
attenuation direction is shifted toward increasing atten-
uation.

For layered models, the take-off inhomogeneity an-
gle at the source location can substantially change
during reflection/transmission at medium interfaces.
The wave vectors of reflected and transmitted waves
are jointly determined by the Christoffel equation and
Snell’s law for attenuative media. The resulting inhomo-
geneity angle can be large even if the layers are weakly
attenuative and are characterized by weak anisotropy
for both velocity and attenuation. For a wave transmit-
ted from a purely elastic medium into an attenuative
layer, the attenuation vector is always perpendicular to
the interface. For example, the inhomogeneity angle of
the waves transmitted through the ocean bottom into
the underwater layer with non-negligible attenuation co-
incides with the transmission angle (Carcione, 1999).

Along with anisotropic geometrical spreading,
anisotropic attenuation in the overburden may distort
the AVO (amplitude-variation-with-offset) response of
reflected waves. We presented numerical examples il-
lustrating the influence of both velocity and attenu-
ation anisotropy on the radiation patterns. Whereas
the directional amplitude variations caused by velocity
anisotropy may be substantial, they do not change with
source-receiver distance. In contrast, since the magni-
tude of the attenuation factor increases with distance,
so do the amplitude distortions caused by attenuation
anisotropy.

To process seismic data from attenuative media,
it is necessary to relate the phase attenuation coeffi-
cient to the group (effective) attenuation along seismic
rays that can be measured from recorded amplitudes.
For homogeneous wave propagation, the phase velocity



2D wavefields in anisotropic atenuating media 161

0 100 200 300
3.8

4

4.2

4.4

4.6

4.8

5 x 10−3

Polar angle (deg)

N
or

m
al

iz
ed

 a
tt

en
ua

tio
n

homog.
inhomog.

0 100 200 300
2.5

3

3.5

4

4.5

5

x 10−3

Polar angle (deg)

N
or

m
al

iz
ed

 a
tt

en
ua

tio
n

homog.
inhomog.

a) b)

Figure 4. P-wave attenuation coefficients for a) model 1; and b) model 2. The solid curves are computed with the inhomogeneity
angle from Figure 2, the dashed curves with the inhomogeneity angle set to zero for all propagation directions.
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Figure 5. Group attenuation coefficients for a) model 1; and b) model 2.
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Figure 6. Radiation patterns of P-waves (solid curves) and SV-waves (dashed ) from a vertical force (f3 = 105 N) in a) model
1; and b) model 2. The magnitude of the particle displacement is computed at a distance of 1000 m away from the force; the
frequency is 100 Hz.
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Figure 7. Radiation patterns of P- waves (left) and SV-waves (right) from a vertical force (f3 = 105 N). The solid and dotted
curves mark, respectively, the radiation patterns of P- and SV-waves for a,b) models 3 and 5 (Table 1); and c,d) models 4 and
6. The dash-dotted curves correspond to the reference isotropic models with isotropic attenuation (i.e., for ε = δ = ε

Q
= δ

Q
= 0

with the other parameters kept fixed). The source-receiver distance is 1000 m; the frequency is 100 Hz.

is equal to the projection of the corresponding group-
velocity vector onto the phase direction. The relation-
ship between the phase and group attenuation involves
the same factor (the cosine of the angle between the two
vectors), but it is the group attenuation that is equal to
the projection of the corresponding phase-attenuation
vector onto the group direction. If the inhomogeneity
angle is not zero, the group velocity and attenuation de-
pend on both the wave and phase-attenuation vectors.
Still, the relationship between group and phase veloc-
ity is accurately represented by equation 15 for homo-
geneous wave propagation. The group attenuation co-
efficient, however, is described by a more complicated
expression that reduces to the projection of the phase-
attenuation coefficient onto the group direction only for
a small inhomogeneity angle.

The analysis here was limited to 2D media, in which
the attenuation vector is confined to the vertical prop-

agation plane and governed by a single (polar) angle.
Our results should be valid for any vertical plane in
azimuthally isotropic homogeneous media and symme-
try planes of azimuthally anisotropic media. In general,
the attenuation vector in either heterogeneous or az-
imuthally anisotropic media is described not just by
the polar angle θI , but also by the azimuthal angle φI .
Therefore, rigorous 3D treatment of radiation patterns
in anisotropic attenuative media requires application
of a higher-dimensional version of the steepest-descent
method.
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APPENDIX A: RADIATION PATTERNS FOR 2D ATTENUATIVE ANISOTROPIC MEDIA

Here we derive an asymptotic solution for far-field radiation patterns in 2D attenuative anisotropic media using
the steepest-descent method. The wave equation in the frequency-wavenumber domain can be written for wave
propagation in the [x1, x3]-plane as
`

c̃ijklkjkl − ρω2δik

´

ũk(ω, k) = f̃i(ω) , (A1)

where kj are the wavenumber components, ρ is the density, ω is the angular frequency, and i, j, k, l = 1, 3. ũk(ω, k)
denotes the spectrum of the k-th component of the particle displacement in the frequency-wavenumber domain,
c̃ijkl = cijkl − icIijkl are the complex stiffness coefficients, and f̃i(ω) is the spectrum of the i-th component of the line
source function (i.e., independent of x2).

The spectrum of the particle displacement is given by

ũk(ω,x) =
1

(2π)2

Z

∞

−∞

Z

∞

−∞

f̃i(ω)

c̃ijklkjkl − ρω2δik

ei(k1x1+k3x3)dk1dk3 . (A2)

The integral A2 can be represented in polar coordinates by using

p1 = p sin θ; p3 = p cos θ , (A3)

where p =
k

ω
is the slowness and θ is the polar angle:

ũk(ω,x) =
1

(2π)2

Z

∞

−∞

Z 2π

0

pf̃i(ω)

c̃ijklp2njnl − ρδik

eiωp(x1 sin θ+x3 cos θ)dp dθ ; (A4)

n1 = sin θ and n3 = cos θ.
Next, we apply the steepest-descent method to evaluate the integral over the slowness p. Two complex poles of

the integrand correspond to the solution of the Christoffel equation:

c̃ijkl p
2njnl − ρδik = 0 . (A5)

The term
pf̃i(ω)

c̃ijklp2njnl − ρδik

in equation A4 can be expanded in a Laurent series in terms of the slowness p, which

allows us to find the residue at the pole (namely, complex slowness p̃s). Equation A4 then takes the form

ũk(ω,x) =
i

2π

Z 2π

0

Ũke
iωp̃s(x1 sin θ+x3 cos θ)dθ , (A6)

where Ũk is the residue associated with a certain wave mode (P , S1, or S2).
The saddle-point condition corresponds to the zero derivative of the phase function:

d [p̃s(x1 sin θ + x3 cos θ)]

dθ

˛

˛

˛

˛

θ=θ̃s

= 0 , (A7)

and

tan θ̃s =
x1

x3
+
dp̃s

dθ

˛

˛

˛

˛

θ=θ̃s

Ṽs

x3 cos θ̃s

(x1 sin θ̃s + x3 cos θ̃s) , (A8)

where Ṽs =
1

p̃s

, and p̃s is obtained from the Christoffel equation at the saddle point θ̃s (both p̃s and θ̃s are complex).

At the pole for p and the saddle point for θ, the slowness components (equation A3) are

p̃1 = p̃s sin θ̃s; p̃3 = p̃s cos θ̃s . (A9)

By expanding the complex phase function into a Taylor series, we found the steepest-descent direction in the
vicinity of the saddle point:

αθ̃s
=



π

4
−
ψ

2
,
5π

4
−
ψ

2

ff

, (A10)

where the perturbation on the steepest-descent direction,
ψ

2
, is the phase angle of the second derivative of the phase

function at the saddle point:

φ = tan−1

»

Im(Ỹ )

Re(Ỹ )

–

; Ỹ =
d2 [p̃s(x1 sin θ + x3 cos θ)]

dθ2

˛

˛

˛

˛

θ=θ̃s

. (A11)
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Evaluating the integral A6 in the high-frequency limit along the steepest descent path yields

ũk(ω,x) =

r

i

2πω

Ũk exp[iωp̃s(x1 sin θ̃s + x3 cos θ̃s)]
v

u

u

t(x1 sin θ̃s + x3 cos θ̃s)

"

p̃s + 2p̃s

„

x1 cos θ̃s − x3 sin θ̃s

x1 sin θ̃s + x3 cos θ̃s

«2

−
d2p̃s

dθ2

˛

˛

˛

˛

θ=θ̃s

#

. (A12)

APPENDIX B: ATTENUATION ANISOTROPY PARAMETERS

The following Thomsen-style attenuation-anisotropy parameters for VTI media with VTI attenuation were introduced
by Zhu and Tsvankin (2006) to simplify the description of attenuation coefficients. Although originally designed for
homogeneous wave propagation, these parameters can be used to characterize attenuation anisotropy for non-zero
values of the inhomogeneity angle (e.g., see equation 8).

ε
Q

≡
1/Q11 − 1/Q33

1/Q33
=
Q33 −Q11

Q11
, (B1)

δ
Q

≡

Q33 −Q55

Q55
c55

(c13 + c33)
2

(c33 − c55)
+ 2

Q33 −Q13

Q13
c13(c13 + c55)

c33(c33 − c55)
, (B2)

γ
Q

≡
1/Q66 − 1/Q55

1/Q55
=
Q55 −Q66

Q66
, (B3)

where Qij = cij/c
I
ij (no index summation) is the ratio of the real and imaginary parts of the stiffness c̃ij = cij − icIij .
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