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Adaptive absorbing boundaries for
finite-difference modeling of acoustic waves

Dave Hale

ABSTRACT

In finite-difference modeling, acoustic waves incident on model boundaries
may be absorbed by well known modifications to the finite-difference equations
at those boundaries. The simplest such modification attenuates waves incident at
a particular angle (usual chosen to be zero), but reflects waves incident at other
angles with an angle-dependent reflection coeflicient. More complicated modifi-
cations to the boundary equations (also well known) enable the boundaries to
absorb waves for an extended range of incident angles.

The effectiveness of the simplest absorbing boundary equation can be im-
proved by letting its design parameter, the parameter that determines which inci-
dent angle to absorb, be determined from the incident wavefield. This improved
absorbing boundary equation is non-linear, because the coefficient in the equation
is determined from the waves to which it is applied. Tests demonstrate that this
adaptive absorbing boundary effectively attenuates boundary reflections.

INTRODUCTION

I recently wrote a simple finite-difference acoustic modeling program in support
of other work at CWP. While implementing the finite-difference equations for the
boundaries, I recalled an idea (Toldi and Hale, 1982) for attenuating boundary reflec-
tions in migration. The idea was to use the simplest absorbing boundary equation
described by Clayton and Engquist (1980), but to let the coefficient in that equation
be determined from the seismic wavefield. In other words, instead of using com-
plicated fized-coefficient boundary equations, use simple adaptive-coefficient boundary
equations.

Thinking that this idea may also be useful in finite-difference modeling of acoustic
waves, I found my copy of Clayton and Engquist’s (1977) classic paper on absorbing
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boundaries for wave equations, and developed an adaptive version of their simplest
absorbing boundary equation.

I have not conducted sufficient tests to enable comparison of this simple adaptive
boundary equation with more complicated (but well known and widely used) bound-
ary equations. Nevertheless, the simple adaptive absorbing boundaries derived and
illustrated below have served me well.

ADAPTIVE ABSORBING BOUNDARIES

Suppose that the wave incident on the lower boundary of a computational grid is
a plane wave:
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where t denotes time, z and z are horizontal and vertical spatial coordinates, v denotes
velocity, and @ denotes the angle of propagation with respect to the vertical z axis.
Differentiating with respect to ¢, z, and z, we obtain:
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Combine equations (1) and (2) to obtain
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Equation (5) is a one-way equation suitable for finite-difference representation on
the lower boundary of a finite-difference modeling grid (Clayton and Engquist, 1977).
To absorb plane waves normally incident on the boundary, set # = 0 in equation (5).
More generally, waves incident at any angle +6 may be absorbed by a finite-difference
implementation of equation (5) for that particular 6.

One problem with equation (5) is that only one angle of incidence § may be chosen,
so that not all waves arriving from multiple directions at some point on the boundary
can be absorbed. A second problem is that, even if the waves arrive from only one
direction, the incident angle 6 is usually not known a prior:.

As suggested by Clayton and Engquist (1977), such a priori knowledge of the inci-
dent angle might be used to “tune” the absorbing boundary equation (5). In practice,
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however, this angle is unknown except for simple models, for which finite-difference
modeling is unlikely to be necessary. Therefore, when implementing an absorbing
boundary via equation (5), one typically chooses the angle § = 0 or, equivalently,
cosf = 1.

Rather than assuming cos@ = 1, I instead use equation (4) to compute:

cosf = (1 — sin? 0)1/2
_o11/2
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For each time ¢ and location z along the lower boundary of the computational grid, I

compute the derivatives dp/0dt and Op/dz via centered second-order finite-difference
approximations:
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When the argument to the square-root in equation (6) is negative, I simply set cos§ =
0.

Let z denote the lower computational boundary where, for all 2, we must com-
pute p(t + At, =z, z), given p(t,z,2) and p(¢,z,z — Az) from a previous time step,
and p(t + At,z, z — Az) computed using the interior finite-difference scheme. A sim-

ple second-order finite-difference approximation to equation (5) is (Thomée, 1962;
Richtmyer and Morton, 1967, p. 137)

p(t + At z,2) = v [p(t + At,z,z — Az) — p(t,z, 2)] + p(t, z, z — Az), (7)

where 7 is defined by
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At each time t and for all z along the lower boundary, the difference coefficient vy is
determined adaptively by computing cos 8 according to equation (6), using the wave-
field at depth z — Az adjacent to the boundary. Note that, because this coefficient
depends upon previously computed values of the wavefield, the adaptive absorbing
boundary equation is non-linear.

For definiteness, I assumed in the derivation above that the boundary of interest
is the lower boundary. Similar absorbing boundary equations can be obtained for the
upper, left, and right boundaries by simply rotating the x and 2 coordinates.

The derivation above also begins with the supposition that the wave incident
on the boundary is a single plane wave. The effectiveness of adaptive absorbing
boundaries depends on how well the incident wave locally approximates a single plane

3



Hale Adaptive absorbing boundaries

wave at each point along the boundary. The following section illustrates the validity
of this approximation for a point source.

A SIMPLE TEST

The absorbing boundary equation derived in the preceding section was incorpo-
rated into a second-order (in both time and space) finite-difference approximation to
the acoustic wave equation. A snapshot of an expanding wavefront corresponding
to a point source is illustrated in Figure 1. Almost no reflected energy is apparent,
which suggests that the single-plane-wave assumption made in the preceding section
is valid for this example.
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F1G. 1. Absorbing boundaries with an adaptive-coefficient boundary equation. Al-
most no reflected energy is apparent. Compare with Figure 2. This figure is a
snapshot of a wave propagating from a point source located at z = 50 and z = 25.

For comparison, Figure 2 illustrates the result of using the same finite-difference
scheme, but with the coefficient v of equation (8) fixed by setting cos§ = 1. This
choice corresponds to the simplest absorbing boundary equation proposed by Clayton
and Engquist (1977). Because this boundary equation absorbs best for small angles of
incidence, no normally reflected energy is evident in Figure 2. However, a significant
amount of energy is apparently reflected at oblique angles of incidence.

Either one of the adaptive- or fixed-coefficient boundary equations is considerably
more absorbing than the simple zero-value boundary equation. Simply setting the
wavefield on the boundaries to zero yields the perfect reflections illustrated in Figure 3.
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F1G. 2. Absorbing boundaries with a fixed-coefficient boundary equation designed
to attenuate waves normally incident on the boundary. Note the reflections off the
boundaries for oblique incidence angles. Compare with Figure 1. This figure is a
snapshot of a wave propagating from a point source located at z = 50 and z = 25.
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FiG. 3. Perfectly reflecting (zero-value) boundary condition. This figure is a snapshot
of a wave propagating from a point source located at z = 50 and z = 25.
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CONCLUSIONS

The simplest absorbing boundary equation may be improved by letting its coeffi-
cient adapt according to values of the wavefield near the boundary. Improvement is
limited by the extent to which a wave incident on the boundary locally approximates
a single plane wave. The simple test illustrated here (and my experience with other
more complicated models not shown) suggests that this approximation is reasonable.

Although not demonstrated in this paper, more complicated boundary equations
with fixed coefficients are capable of absorbing an extended range of incident angles.
Further testing is necessary to determine how the performance of these equations
compares with that of the adaptive absorbing boundaries described here.
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