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1 Overview

Solving an inverse problem means making inferences about physical systems
from real data. These inferences are based on mathematical representations
of the systems; we call these representations models. Functionals of the
models represent observable properties of the system; for example, the mass
density as a function of space in the Earth, the depth of the continents, the
radius of the core-mantle boundary.

In formulating inverse problems and interpreting inversion estimates we
need to address the following questions:

I. How accurately are the data known? That is, what does it mean to
“fit the data”?

II. How accurately is the physical system modeled? Does the model in-
clude all the physical effects that contribute significantly to the data?

ITI. What is known about the model parameters independently of the data?
In other words, what does it mean for a model to be reasonable or
unreasonable?

The note is organized as follows. In Section 2 we set the general framework
for the inverse problems that will be considered. In Section 3 we present two
different approaches by which prior information can be included in geophys-
ical inverse calculations: Bayesian and frequentist. These two approaches
differ fundamentally in the means by which probability is introduced into
the calculation. They also take fundamentally different approaches to the
treatment of the observed data and prior information. Bayesians introduce
probabilities on the space of models (prior information is thus probabilistic)
and condition on the observed data. Frequentists, on the other hand, assume
a distribution prior to observing the data, which does not change once the
data have been observed, and use deterministic prior information; probabil-
ity enters the calculations via the data errors, which are assumed to have a
random component. The choice of prior probability model for the Bayesian
inference is not always clear even when the prior information is well defined;
this is discussed in Section 4 and exemplified with a toy problem in Section
5. The example illustrates how representing deterministic constraints prob-
abilistically may inject information into the calculation that is not strictly



required by the constraint. This problem becomes worse in high-dimensional
spaces. In Sections 7 and 8 we provide two examples of inverse problems
based on real data to illustrate the points raised in the note.

1.1 Some Notation

Here is a short summary of the notation that will be used henceforth.

M: The space of Earth models. A linear vector space, usually infinite
dimensional. E.g., £L2(R?).

D: The space of measurements. In practice always finite dimensional.
Typically R™, where n is the number of observations.

D: Data random variable, usually vector valued.

d: Values taken on by D, the data. d € D. Where there is no danger
of confusion we will use D and d interchangeably.

m: A model or parameter. m € M.

E(), var(): Expectation and variance operators.

Models are usually parameterized so that estimating a model is equivalent
to estimating its corresponding parameters. But, clearly, the choice of ob-
servables and parameterization is not unique. For instance, in problems of
elasticity we can use the elastic stiffness tensor of the elastic compliance ten-
sor. We can use wave-speed, or wave slowness. An estimator of a model m
(or a functional thereof) is a function § : D — M. The estimator may just
estimate the parameters that characterize the model. The estimate given the
data d is denoted as §(d).

2 A General Statement of the Inverse Prob-
lem
As the result of some measurement, or set of measurements, a number n of

data are collected. The amount of data is always finite because instruments
have finite bandwidth. We usually take the data space D to be R™. The data
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are related to the physical models through the forward modeling operator
(also known as the data mapping). The forward operator is a function that
maps vectors from model space into data space

g: M —D.

In practice the forward operator g is always an approximation. In geophysics
this is primarily because one cannot afford to represent the true complexity
of the Earth on computer. Even if this were possible it might not be worth
the effort given the instrument’s resolution and noise level in the data. This
will be discussed in detail in the note, but for now it suffices to be aware that
there is an error associated with using ¢g. Since this will be an error associated
with the ability to predict the measurement, it is an n-dimensional vector
f. Finally, there will be an n-dimensional vector of random measurement
errors, €. So the connection between models and data can be written as:

d=g(m)+e+f.

Given measurements d, the goal is to estimate the model m (or a functional
L(m)). A function of the data that is used to estimate the model m (i.e.,
the inversion algorithm) is called an estimator of m.

Note that since ¢ maps an infinite dimensional space into a finite dimen-
sional space, the data mapping has a non-trivial kernel. So, even in the
absence of measurement and modeling errors the data mapping will not be
invertible and the set of models that predict the data equally well may be
quite large. This in itself in not a problem, the problem is when these equally
predicting models yield wildly different values for the model functional we
are interested in. By including prior information we attempt to constrain the
range of feasible models and thus control the effect of those null elements.
This is illustrated with an example in Section 2.1. Even when there is a
unique solution, it may be unstable to small perturbations in the data. In
this case we may also use some prior information to stabilize the solution.

2.1 Example: Estimating the derivative of a smooth
function

To motivate the discussion let us consider a simple example which shows the
necessity of including prior information. Later, in Section 4, we will introduce



tools from statistical decision theory that allow us to quantify the influence
of different types of prior information.

Suppose we have noisy observations of a smooth function f at the equidis-
tant pointsa < z1 < ... <z, <b

fz:f(x2)+617 221,,77,, (]‘)

where the errors ¢; are assumed to be iid N(0,0%)!. We want to use these
observations to estimate the derivative f’. We define the estimator
; Jiv1 = [i

fl(‘rmz) = T’ (2)

where h is the distance between consecutive points, and x,,, = (2,41 + x;)/2.
To measure the performance of the estimator (2) we use the mean squared
error (MSE). The variance and bias of (2) are

202

Var(f'(#m,)] = S5
Bias[f'(#m;)] = E(f'(@m;) — [ (@m;))

) 20D i) = o) = (o),

for some «; € [z, x;11]. We need more information to assess the size of the
bias. Let us assume that the second derivative is bounded on [a, b]

If"(z)] < M, z € [a,b].
It then follows that

[Bias[f' (zm,)]| = /(i) (ci = B;)| < Mh,

for some f3; between «; and z,,,. As h — 0 the variance goes to infinity while
the bias goes to zero. The MSE is bounded by

202 1 rr . £t 2 202 212

ﬁ S MSE[f (mml)] = Var[f (*Tmz)] + Blas[f ('/'lez)] S ﬁ +M h*. (3)

Independent, identically distributed random variables, normally distributed with mean
0 and variance o2.




It is clear that choosing the smallest A possible does not lead to the best
estimate; the noise has to be taken into account. In fact, the lowest upper
bound is obtained for h = 2'/%,/o/M. The larger the variance of the noise,
the wider the spacing between the points. But, do we really need to assume
any more prior information, in addition to model (1), to bound the MSE? We
do. Take any smooth function g which vanishes at the points x4, ..., x,,. Then,
the function f = f + ¢ satisfies the same model as f, yet their derivatives
could be very different. For example, choose an integer m and define

g(z) = sin (—27rm(52— xl)) .

Then f(z;) + g(zi) = f(z:) and

2m <27rm(3: - x1)>
cos 3 .

By choosing m large enough, we can make the difference f'(zm,) — f'(Zm,)
as large as we want; without prior information we can not estimate the
derivative with finite uncertainty.

3 Bayesian and Frequentists Methods of In-
ference

There are two fundamentally different meanings of the term “probability” in
common usage (Scales & Snieder, 1997). If we toss a coin N times, where N
is large, and see roughly N /2 heads, then we say the probability of getting a
head in a given toss is about 50%. This interpretation of probability, based on
the frequency of outcomes of random trails, is therefore called “frequentist”.
On the other hand it is common to hear statements such as: “the probability
of rain tomorrow is 50%”. Since this statement does not refer to the repeated
outcome of a random trial, it is not a frequentist use of the term probability.
Rather, it conveys a statement of information (or lack thereof). This is the
Bayesian use of “probability”. Both ideas seem natural to some degree, so it
is perhaps unfortunate that the same term is used to describe them.
Bayesian inversion has gained considerable popularity in its application to
geophysical inverse problems. The philosophy of this procedure is as follows.
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Suppose one knows something about a model before using the data. This
knowledge is cast in a probabilistic form and is called the prior probability
model. Prior means before the data have been recorded; i.e., information that
is independent of the data to be recorded. If one has a set of data whose
statistical characteristics are known (e.g., the data covariance matrix for
Gaussian errors), then Bayesian inversion provides a framework for combining
the probabilistic prior model information with the information contained in
the observed data in order to refine the prior distribution. The updated
distribution is the posterior model distribution given the data; it is what
we know after we have assimilated the data and the prior information. The
point of using the data is that the posterior model information hopefully
constrains the model more tightly than the prior model distribution.

However, the notion of prior model statistics can in practice be somewhat
shaky. As an example, consider a seismic survey. In such a situation one may
have a fairly accurate idea of the ranges of seismic velocity and density that
are realistic, and perhaps even the vertical correlation length (if bore-hole
measurements are available). However, the horizontal length scale of the ve-
locity and density variation is to a large extent unknown. Given this, how
can Bayesian inversion be so popular when our prior knowledge is often so
poor? The reason for this is that in practice the formalism of prior model
statistics is used to regularize the posterior solution. But logically, the prior
distribution must be known a priori, in which case it cannot matter whether
it regularizes the problem (Gouveia & Scales, 1997). In practice, via a suc-
cession of different calculations, the characteristics of the prior model are
often tuned in such a way that the retrieved model has subjectively agree-
able features. Note that in such an approach the prior model statistics are
used a posteriori to tune the retrieved model!

Bayesian statistics relies completely on the specification of prior model
statistics, i.e. on the knowledge that one has of the model before using the
recorded data. The flexibility taken in using the prior model statistics as
a knob to tune properties of the retrieved model therefore is completely at
odds with the philosophy of Bayesian inversion. This does not mean that
there is anything wrong with Bayesian inversion, but it does suggest that the
reason for the popularity of Bayesian inversion within the Earth sciences is
inconsistent with the underlying philosophy. A common attitude seems to
be: “If I hadn’t believed it, I wouldn’t have seen it.”



3.1 Bayesian Inversion in Practice

In practice it is difficult to honestly use Bayes’ Theorem to solve realistic
inverse problems. On the one hand the information at our disposal that
could be regarded as being known a priori is highly varied and often difficult
to quantify objectively. On the other hand a complete Bayesian analysis may
be computationally intractable.

There are two important questions that have to be addressed in any
Bayesian inversion:

e How do we represent the prior information? This applies both to the
prior model information and to the description of the data statistics.

e How do we summarize the posterior information?

The second question is the easiest to answer, at least in principle. It is just
a matter of applying Bayes’ theorem to compute the posterior distribution.
We then use this distribution to study the statistics of different parameter
estimates. For example, we can find credible regions for the model param-
eters given the data, or simply use posterior means as estimates and poste-
rior standard deviations as “error bars”. However, very seldom will we be
able to compute all the posterior estimates analytically; we often have to
use computer-intensive approximations based on Markov Chain Monte Carlo
methods (see for example, Tanner (1993)).

The first question is a lot more difficult to answer. In practice there are
essentially three strategies. The first strategy is a subjective Bayesian one:
prior probabilities are designed to represent states of mind, prejudices or prior
experience. But, depending on the amount and type of prior information,
the choice of prior may or may not be clear. For example, if a parameter y
must lie between a and b, is it justified to assume that p has a uniform prior
distribution on the interval [a, b]? We will address this question in an example
below, but for now simply observe that there are infinitely many probability
distributions consistent with this statement. To pick one may be an over-
specification of the available information. Even an apparently conservative
approach, such as taking the probability distribution that maximizes the
entropy subject to the constraint that p lies in the interval, may lead to
pathologies in high-dimensional problems. This shows how difficult it may
be to unambiguously prescribe the statistical properties of the prior model.
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One way out of this dilemma is to ignore it and presume that “probability
lies in the eye of the beholder”, but this means that our posterior probability
will be different from yours.

A second approach attempts to make a more objective choice of priors by
relying on theoretical considerations such as maximum entropy, transforma-
tion invariance (Jaynes invariant prior); or by somehow using a large number
of observations to estimate a prior. This latter approach is sometimes called
empirical Bayes. For example, suppose one is doing a gravity inversion to
estimate mass density in some reservoir. Suppose further that there are
available a large number of independent, identically distributed laboratory
measurements of density for rocks taken from this reservoir (a big if!). Then
one could use the measurements to estimate a probability distribution for
mass density that could be used as a prior for the gravity inversion. This
is the approach taken in (Gouveia & Scales, 1998), where in-situ (bore-hole)
measurements are used as an empirical prior for surface seismic data. The
empirical Bayes analysis can be seen as an approximation to a full hierarchical
Bayes analysis based on the joint probability distribution of all parameters
and available data. For an introduction to empirical and hierarchical models
see, for example, Gelman et al. (1997) and references therein. For a review
on the development of objective priors see Kass & Wasserman (1996).

3.2 Bayes vs Frequentist

A third strategy is to abandon Bayes altogether and use only deterministic
prior information about models: wave-speed is positive (a matter of defini-
tion); velocity is less than the speed of light (a theoretical prediction); the
Earth’s mass density is less than 25 g/cm?® (a combination of observation and
theory that is almost certainly true). The inference problem is still statistical
since random data uncertainties are taken into account. Essentially the idea
is to look at the set of all models that fit the data. Then perform surgery
on this set, cutting away those models that violate the deterministic criteria,
e.g., have negative density. The result will be a (presumably smaller) set of
models that fit the data and satisfy the prior considerations. In this frame-
work no particular model in the constrained set has special significance. We
have no way of saying that model m; is more likely than model ms,, since in
this frequentist approach we have not defined a probability distribution on
the models themselves. All we do is choose any model that fits the data to a
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desired level and satisfies the prior model constraints. Tikhonov’s regulariza-
tion is one way of obtaining an inversion algorithm by restricting the family
of models that fit the data; e.g., among all the models that fit the data,
you choose one that has particular features, the smoothest, the shortest, etc.
(For instance, see Scales et al. (1990) and Gouveia & Scales (1997)).

In the Bayesian paradigm, probability distributions are the fundamental
tools. Bayesians regard it as meaningful to speak of the probability of a
hypothesis given some evidence, and are able to conduct pre-data and post-
data inferences. Frequentists are more concerned with pre-data inference
and run into difficulties when trying to give post-data interpretations to
their pre-data formulation. In other words, uncertainty estimates such as
confidence sets are based on the error distribution, which is assumed to be
known a priori, and on hypothetical repetitions of the data gathering process.
However, see Goutis & Casella (1995) for a review of methodologies that have
been developed to do frequentist post-data inference.

We have seen that the choice of prior distributions is not always well
defined. In this case it would seem more reasonable to follow a frequentist
approach. But it may also happen that parameters are not well defined. For
instance, is the “true mass of the earth” a meaningful expression? Perhaps,
but does the definition include the atmosphere? If so how much of the atmo-
sphere? If not, does it take into account that the mass is constantly changing
(slightly) from, e.g., micrometeorites? Even if you make the “true mass of
the Earth” well-defined (it will still be arbitrary to some extent), it can never
precisely known any more than the temperature of an isolated gas can be.

So, which approach is better? Bayesians are happy to point out some
well known inconsistencies in the frequentist methodology. Some Bayesians
even go as far as claiming that anyone in her/his right frame of mind should
be a Bayesian. Frequentists, on the other hand, complain about the some-
times subjective choice of prior and the computational complexity of the
Bayesian approach. In real down-to-earth data analysis we prefer to keep
an open mind. Different methods may be better than others depending on
the problem. Both schools of inference have something to offer. For colorful
discussions on the comparison of the two approaches see Efron (1986) and
Lindley (1975). See also Rubin (1984) for ways in which frequentist methods
can be used to complement Bayesian inferences.
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4 What Difference Does the Prior Make?

In a Bayesian calculation, whatever we are estimating depends on the prior
and conditional distributions given the data. As far as we know, there is
no established procedure to check how much information the prior injects
into the posterior estimates. In this example we will compare the risks of
the estimators. To measure the performance of an estimator §(d) of m we
define the loss function L(m,d(d)); L should always be non-negative and
should be zero for the true model. That is, for any s € M L(s,m) > 0 and
L(m,m) = 0. The loss is a measure of the cost of estimating the true model
to be 6(d) when it is actually m. For example, a common loss function is
the squared error: L(m,d(d)) = (m — §(d))?. But there are other choices
like ¢,-norm error.

The loss L(m, §(d)) is a random variable since it depends on the data d.
We average over the data to obtain an average loss. This is called the risk of
0 given the model m:

Risk R(m,d) = Ep[L(m,s(d))] (4)

where P is the probability distribution of the errors. For squared error loss
the risk is the usual mean squared error.

4.1 Bayes Risk

The expected loss depends on the chosen model. Some estimators may have
small risks for some models but not for others. To compare estimators we
need a global measure that takes all the models into account. The Bayesian
risk is defined as the expected value of the risk over the model distribution; in
other words, it is a weighted average of the risk using the model distribution
as weight function:

Bayes Average Risk 7, = E,p[L(m,d(d))],

where p is the prior distribution on the models. An estimator with the
smallest Bayesian risk is called a Bayes estimator. Note that we have used a
frequentist approach to define the Bayes risk, since we have not conditioned
on the observed data; this goes against the principles of some Bayesians. It
does make sense, however, to expect good frequentist behavior if the Bayesian
approach is to be used repeatedly with different data sets.
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Denote by f the joint distribution on models and data. The marginal of
f with respect to the data is obtained by integrating f over the models:

h(d) = / “d)d
(@)= [ J(m, dyim
From Bayes’ theorem, the conditional probability on m given d is

planja) = HEe)

where p(m), the a priori distribution, is the marginal of f with respect to
m. The conditional probability p(m|d) is the so-called Bayesian posterior
probability, expressing the idea that p(m|d) assimilates the data and prior
information.

One can define a number of reasonable estimators of m from p(m|d).
For example, the m that maximizes p(m|d) (or P[||§(d) — m|| < ¢] for some
¢ > 0). Or one could compute the estimator that gives the smallest Bayes
risk for a given prior p and loss function L. We have the following theorem:

Theorem For squared error loss function the Bayes estimator is the pos-
terior mean. Lehmann (1983), page 239.

Here is a simple example of using a normal prior to estimate a normal mean.
Assume that there are n observations d = (dy, dy, ...d,,) which are iid N(a, 0?)
and that we want to estimate the mean a given that the prior p is N(u, 3%).
Up to a constant factor, the joint distribution for a and d is ((Lehmann,
1983), page 243):

1 & 1
f(d,a) = exp [—% ;(d, - a)Q] exp l—%(a - /L)2‘| )
The posterior mean is given by
d/c2 2
E(ald) = nd/o” + p/B°
n/o?+1/3?
where d is the mean of the data. The posterior variance is

1

var(ald) = Py PRI h
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Notice that the posterior variance is always reduced by the presence of a
nonzero 3. The posterior mean, which is the Bayes estimator for squared
error loss, can be written as

2 2
§(d) = [L] d+ [U—ﬁ] L.
nj/o?+1/3? njo?+1/32

In this case the Bayes estimator is a weighted average of the mean of the
data and the mean of the Bayesian prior distribution; the latter is the Bayes
estimator before any data have been recorded. The Bayes risk is the integral
over the data of the posterior variance of a. Since the posterior variance does
not depend of d, the Bayes risk is just the posterior variance. Note also that
as # — 0, increasingly strong prior information, the estimate converges to
the prior mean. As f — oo, increasingly weak prior information, the Bayes
estimate converges to the mean of the data. Also note that as  — oo the
prior is improper (not normalizable).

4.2 What is the Most Conservative Prior?

It often happens that there is not enough information to construct a prior
density for the unknown variables, or that the information available is not
easily translated into a probabilistic statement; yet we need a prior to be able
to apply Bayes’ theorem. In this case we try to find a prior that will allow
us to conduct the Bayesian inference while injecting a minimum of artificial
information; that is, information which is not justified by the process. When
no prior information is available we call conservative priors noninformative.

We have defined the Bayes risk r, for a Bayes estimator ¢, given a prior
p. It stands to reason that the more informative the prior the smaller its
associated risk; we therefore say that the prior p is least favorable if r, > ry
for any other prior p'. A least favorable prior is associated with the greatest
unavoidable loss.

In the frequentist approach the greatest unavoidable loss is associated
with the maximum risk (4) over all the possible models. An estimator that
minimizes the maximum risk is called a minimaz estimator. Lehmann (1983)
shows that under certain conditions the estimator corresponding to a least
favorable prior actually minimizes the maximum risk. This is true, for exam-
ple, when the Bayes estimator has a constant risk. In this sense we can think
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of a least favorable prior as being a route to the most conservative Bayesian
estimator.

How does one find a conservative (noninformative) prior? Again, there is
no easy answer, even the terms ‘conservative’ and ‘noninformative’ are not
well defined. But one can, for example, define a measure of information (e.g.
entropy) and determine a prior which minimizes/maximizes this measure
(e.g. maximum entropy); or one could define properties that noninfomative
priors are expected to have (e.g., invariance). See Kass & Wasserman (1996).

5 Example: A Toy Inverse Problem

In Section 8 we shall discuss a cosmological problem where we explore the
sensitivity of some unknown parameters to different amounts of prior infor-
mation. Here we consider a simple example of estimating the mean a of a
unit variance normal distribution N(a, 1) with an observation d from N(a, 1)
given that |a| is known to be bounded by b. These two problems are actually
related. Following Stark (1997), we will use this as a model of an inverse
problem with a prior constraint. Without the prior bound, d is an estima-
tor of a but we hope to do better (obtain a smaller risk) by including the
bound information. How can we include this information in the estimation
procedure? One possibility is to use a Bayesian approach and assign a prior
distribution to ¢ which is uniform on [—b, b]. We will show that this uniform
distribution injects stronger information than might be evident.

5.1 Bayes Risk

Start with an observation d from N(a, 1) and suppose we know a priori that
la| is bounded by b. We incorporate the bound by assigning to a a prior
uniformly distributed on [—b, b]. The joint distribution for ¢ and d is

1 1
d,a) = =TI
f( a) [ b,b}\/%

2b
where Z;_; 4 is the indicator function for the interval [—b, b]; i.e.,

exp [—l(d - a)Q]

2



Stark (1997) shows the results of a Monte Carlo calculation of the Bayes
risk for this problem. We will reproduce this calculation, although it is
possible to compute the Bayes estimate and risk via numerical integration.
Figure 1 shows the results of this Monte Carlo calculation of Bayes risk with
a uniform prior on [—b,b] compared with the minimax risk to be described
next. As the constraint weakens (b increases) the Bayes risk gets closer to 1.
(The dashed and dotted curves in this figure will be explained in the next
section.)

5.2 The Flat Prior is Informative

We have used the uniform distribution to “soften” (i.e., convert to a proba-
bilistic statement) the constraint a € [—b,b]. Now we want to measure the
effect of this softening of the constraint. Have we included more information
than we really had?

Given the observation d from N(a,1) and knowing that |a| < b, what is
the worst risk (mean squared error) we may hope to achieve with the best
estimator without imposing a prior distribution on a? In other words we
want to compute the minimax risk R(b) given the bound b

R(b) = min; max,e[_pp Ep(a — §(d))>.

R(b) is a lower bound for the maximum risk and an upper bound for
the risk of any other estimator. Although it is difficult to compute its exact
value, it is easy to see that R(b) < min{b? 1}. Donoho et al. (1990) show
that 4B

502 4+1 < R(b).

Figure 1 shows upper and lower bounds for for the minimax risk as a function
of b. Note that for b < 3 the Bayes risk is outside the minimax bounds. This
is an artifact of the way we have “softened” the bound. In other words, the
uniform prior distribution injects more information than the hard bound on
a, as judged by comparing the most pessimistic frequentist risk with that of
the Bayesian estimator. For b > 4 the comparison is not easy but it can also
be shown that R(b) — 1 as b — co. So, as the bound weakens the Bayes and
minimax risk both approach 1.
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Figure 1: For squared-error loss, the Bayes risk associated with a uniform
prior is shown along with the upper and lower bounds on the minimax risk as
a function of the size of the bounding interval [—b,b]. When b is comparable
to or less than the variance (1 in this case), the risk associated with a uniform
prior is optimistic
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6 Priors in High Dimensional Spaces: The
Curse of Dimensionality

As we have just seen, most probability distributions usually have more in-
formation than implied by a hard constraint. To say, for instance, that any
model with ||m|| < 1 is feasible is certainly not the same thing as saying
that all models with |m|| < 1 are equally likely. And while we could look
for the most conservative or least favorable such probabilistic assignment,
Backus (1988) makes an interesting argument against any such probabilis-
tic replacement in high- or infinite-dimensional model spaces. His point can
be illustrated with a simple example. Suppose that all we know about an
n—dimensional model vector m is that its length m = ||m|| is less than some
particular value—unity for the sake of definiteness. In other words, suppose
we know a priori that m is constrained to be within the n—dimensional unit
ball B,,. Backus considers various probabilistic replacements of this hard
constraint; this is called “softening” the constraint. We could for example
choose a prior probability on m which is uniform on B,. Namely, the prob-
ability that m will lie in some small volume 6V € B, shall be equal to 6V
divided by the volume of B,,. Choosing this uniform prior on the ball, it is
not difficult to show that the expectation of m? for an n—dimensional m is

n
E(m?) = —

which converges to 1 as n increases. Unfortunately, the variance of m? goes as
1/n for large n, and thus we seem to have introduced a piece of information
that was not implied by the original constraint; namely that for large n,
the only likely vectors m will have length equal to one. The reason for this
apparently strange behavior has to do with the way volumes behave in high
dimensional spaces. If we compute the volume of an n—dimensional shell of
thickness € just inside an R—diameter ball we can see that:

Ve=V(R)-V(R—¢) = Co(R"—(R—¢)")
- vin(-(-3))

where C,, depends only on the dimension. Now for ¢/R < 1 and n > 1 we
have
Ve = V(R) (1 - e_”e/R) .
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This says that as n gets large, nearly all of the volume of the ball is com-
pressed into a thin shell just inside the radius.

But even this objection can be overcome with a different choice of prob-
ability distribution to soften the constraint. For example, choose m to be
uniformly distributed on [0, 1] and choose the n — 1 spherical polar angles
uniformly on their respective domains. This probability is uniform on ||ml|,
but non-uniform on the ball. However it is consistent with the constraint
and has the property that the mean and variance of m? is independent of the
dimension of the space.

So, as Backus has said, we must be very careful in replacing a hard
constraint with a probability distribution, especially in a high-dimensional
model space. Apparently innocent choices may lead to unexpected behavior.
For more information on non-informative priors see Box and Tiao (1973) and
Kass & Wasserman (1996).

7 Example: Vertical Seismic Profile

We now present a simple example related to Question I in Section 1. We use
a vertical seismic profile (VSP-used in exploration seismology to image the
Earth’s near surface) experiment to illustrate how a fitted response depends
on the assumed noise level in the data. Figure 2 shows the geometry of a
VSP. A source of acoustic energy is at the surface near a vertical bore-hole
(left side). A string of receivers is lowered into a bore-hole, recording the
transit time of the down-going acoustic pulse. These transit times are used
to construct a “best-fitting” model of the velocity (or index of refraction) as
a function of depth v(z). There is no point in looking for lateral variations
in v since the rays propagate nearly vertically. If the Earth is not laterally
invariant, this assumption introduces a systematic error into the calculation.
For each observation (and hence each ray) the forward problem is

1
t= /ray e

If the velocity model v(z) and the ray paths are known, then the travel time
can be computed by integrating the velocity along the ray path.

The goal is to somehow estimate v(z) (or some functional of v(z)), or
to estimate confidence intervals for v(z). Unless v is constant, the rays will
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refract and therefore the domain of integration depends on the unknown
velocity. This makes the inverse problem mildly nonlinear. We will neglect
nonlinearity in the present example by assuming that the rays are straight
lines.

How well a particular v(z) model fits the data depends on how accurately
the data are known. Roughly speaking, if the data are known very precisely
we will have to work hard to come up with a model that fits them to a
reasonable degree. If the data are known only rather imprecisely, then we
can fit them more easily. For example, in the extreme case of only noise, the
mean of the noise is a fit to the data.

As a simple synthetic example we constructed a piecewise constant v(z)
with 40 layers and used 40 unknown layers to perform the reconstruction.
We computed 78 synthetic travel times and contaminated them with uncor-
related Gaussian noise. The level of the noise doesn’t matter for the present
purposes; the point is that given an unknown level of noise in the data,
different assumptions about this noise will lead to different kinds of recon-
structions. With the constant velocity layers, the system of forward problems
for all 78 rays reduces to

t=J-s (6)

where s is the 40-dimensional vector of reciprocal layer velocity (slowness to
seismologists) and J is a matrix whose ¢ — j entry is the distance the i-th ray
travels in the j-th layer. (See Bording et al. (1987) for the details behind
this tomography calculation.) So, the data mapping g is the inner product
of the matrix J and the slowness vector s.

Let t? be the i—th observed travel time, t$(s) is the i-th travel time
calculated through a given slowness model s, and o; is the standard deviation
of the i-th datum. If the true slowness is s,, then the following model of the
observed travel times is assumed to hold:

t; =ti(so) + €, (7)

2

where ¢€; is a noise term with zero mean and variance o;. Our goal is to

estimate s,. A standard approach to solve this problem is to determine
slowness values s that make a misfit function such as

o=y (11 ®)

i—1 gi
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Figure 2: Simple model of a vertical seismic profile (VSP). A source is at

the surface of the Earth near a vertical bore-hole (left side). A string of
receivers is lowered into the bore-hole, recording the transit time of a down-
going compressional wave. These transit times are used to construct a “best-
fitting” model. Here v; refers to the velocity in discrete layers, assumed to

be constant. We will ignore the discretization error in this calculation.
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smaller than some tolerance. Here N is the number of observations, The
symbol x? is often used to denote this sum because x%(s,) is just an average of
independent x2-distributed variables when (7) holds and the noise is Gaussian
and uncorrelated.

We have assumed that the number of layers is known, 40 in this example,
but this is usually not the case. Choosing too many layers may lead to
an over-fitting of the data. In other words we end up fitting noise induced
structures. Using an insufficient number of layers will not capture important
features in the data. There are tricks and methods to try to avoid over- and
under-fitting. In the present example we do not have to worry since we will be
using simulated data. To determine the slowness values through (8) we have
used a truncated SVD reconstruction, throwing away all the eigenvectors
in the generalized inverse approximation of s that are not required to fit
the data at the x> = 1 level. The resulting model is not unique, but it is
representative of models that do not over-fit the data (to the assumed noise
level).

We will consider the problem of fitting the data under two different as-
sumptions about the noise. Figure 3 shows the observed and predicted data
for models that fit the travel times on average to within 0.3 ms and 1.0 ms.
Remember, the actual pseudo-random noise in the data is fixed throughout,
all we are changing is our assumption about the noise, which is reflected in
the data misfit criterion.

We refer to these as the optimistic (low noise) and pessimistic (high noise)
scenarios. You can clearly see that the smaller the assumed noise level in the
data, the more the predicted data must follow the pattern of the observed
data. It takes a complicated model to predict complicated data! There-
fore, we should expect the best fitting model that produced the low noise
response to be more complicated than the model that produced the high
noise response. If the error bars are large, then a simple model will explain
the data.

Now let us look at the models that actually fit the data to these different
noise levels; these are shown in Figure 4. It is clear that if the data uncer-
tainty is only 0.3 ms, then the model predicts (or requires) a low velocity
zone. However, if the data errors are as much as 1 ms, then a very smooth
response is enough to fit the data, in which case a low velocity zone is not
required. In fact, for the high noise case essentially a linear v(z) increase
will fit the data, while for the low noise case a rather complicated model is
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required. (In both cases, because of the singularity of J, the variances of the
estimated parameters become very large near the bottom of the borehole.)

Hopefully this example illustrates the importance of understanding the
noise distribution to properly interpret inversion estimates. In this partic-
ular case, we didn’t simply pull these standard deviations out of hat. The
low value (0.3 ms) is what you happen to get if you assume that the only
uncertainties in the data are normally distributed fluctuations about the run-
ning mean of the travel times. However, keep in mind that nature doesn’t
really know about travel times. Travel times are approximations to the true
properties (i.e., finite bandwidth) of waveforms. Further, the travel times
themselves are usually assigned by a human interpreter looking at the wave-
forms. Based on these considerations, one might be led to conclude that a
more reasonable estimate of the uncertainties for real data would be closer
to 1 ms than 0.3 ms. In any event, the interpretation of the presence of a
low velocity zone should be viewed with some scepticism unless the smaller
uncertainty level can be justified.

8 Example: Cosmic Microwave Background

The cosmic microwave background (CMB) is the radiation left over from the
Big Bang. Through the CMB we see the universe as it was only 300,000
years after the Big Bang: Studying the CMB is like doing archaeology at a
cosmological scale. In 1992 cosmologists established the existence of small
directional variations in the CMB temperature (Smoot et. al (1992)). Had
these variations not been found, cosmologists would have required completely
new theories to explain the large-scale structure we see in the Universe to-
day. Interested readers may consult Silk (1997) for a gentle introduction to
cosmology.

For the moment it suffices to think of the CMB as a temperature function
defined on the unit sphere. Let T'(7) be the CMB temperature in the direction
7 in the sky. We assume that 7" is a square-integrable function; the model
space is M = £%(S?). Any function 7 in M has a spherical harmonic

representation
o9 £

T(f) = Z Z afﬁ,mYYZ,m(f)a

=0m=—¢
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Figure 3: Observed data (solid curve) and predicted data for two different
assumed levels of noise. In the optimistic case (dashed curve) we assume the
data are accurate to 0.3 ms. In the more pessimistic case (dotted curve), we
assume the data are accurate to only 1.0 ms. In both cases the predicted
travel times are computed for a model that just fits the data. In other
words we perturb the model until the RMS misfit between the observed
and predicted data is about N times 0.3 or 1.0, where N is the number of
observations. Here N = 78.
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Figure 4: The true model (solid curve) and the models obtained by a trun-
cated SVD expansion for the two levels of noise, optimistic (0.3 ms, dashed
curve) and pessimistic (1.0 ms, dotted curve). Both of these models just fit
the data in the sense that we eliminate as many singular vectors as possible
and still fit the data to within 1 standard deviation (normalized x? = 1).
An upper bound of 4 has also been imposed on the velocity. The data fit is
calculated for the constrained model.
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where Yy, is the m—th spherical harmonic of degree ¢. Any element of
the model space can be identified with its sequence of harmonic coefficients
a = {agm}. If the CMB were uniform then a,,,, = 0 for £ > 0. To determine
the existence of small variations in the CMB is equivalent to finding non-zero
harmonic coefficients for £ > 0.

We now formulate the estimation of CMB harmonic coefficients as an
inverse problem. Similar questions arise in geomagnetism when trying to
estimate the Gauss coefficients of the Earth’s magnetic field, or in the es-

timation of harmonic coefficients of the core mantle boundary topography
(Stark (1992)). We model CMB data as

T =Ka +z, (9)

where z is a vector of uncorrelated Gaussian noise and K is the data mapping
representing, for example, the radiometer beam smoothing. K is a linear op-
erator from the space of square-integrable sequences to R", our measurement,
space. Because of kinematic effects the cosmologically interesting coefficients
are those of degree ¢ > 2. An interesting question is thus to estimate the five
coefficients of degree £ = 2 (quadrupole coefficients). For simplicity, assume
that we want to estimate a single coefficient. Since any coefficient is a linear
functional L of the model a, the question is then to estimate L(a) given the
data (9). It sounds simple enough but there are important difficulties in prac-
tice: We do not have data uniformly spread on the sphere, and even when we
do, since Galactic emissions dominate the microwave radiation, we have to
neglect data near the Galactic plane. As a consequence, there are infinitely
many models a, satisfying K(a,) = 0, where L(a,) can take arbitrarily large
values. A similar problem arises in the estimation of harmonic coefficients
of the core mantle boundary where the gaps are in the distribution of rays
which reflect off this boundary.

Since the spherical harmonics are no longer orthonormal on the cut sky, a
simple least-squares fit to a truncated expansion will yield misleading coeffi-
cient estimates. So, how can we estimate the coefficients? To start with, we
can assume a mild bound on the CMB energy and use minimax methods sim-
ilar to those described in Section 5 to answer the following question: Among
all the possible estimators (of a quadrupole coefficient), what is the size of
the smallest 1 — « confidence interval that covers the quadrupole coefficient
of any model satisfying the energy bound, given the Galactic cut, noise level,
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and geometry of the observations in the sky? In other words, what is the
best we can do with the information we have. It turns out that even with the
best available data (NASA’s COBE DMR? data) the confidence intervals are
almost 10 times larger than the minimum required to obtain cosmologically
interesting conclusions (Tenorio et al. (1998)). Therefore we need more prior
information.

We have been naturally lead to Question III in Section 1: what prior
information can we use? So far we have considered the CMB temperature
as fixed in our sky but cosmologists view our Universe as only a realization
of an infinite number of plausible universes. Cosmologists think of the CMB
temperature 7' as a random field on the sphere with the measured CMB
being just a noisy version of one of its realizations. In the current most
popular theories 7" is modeled as a homogeneous Gaussian random field: the
{asm} are independent zero-mean Gaussian random variables whose variance
depends only on ¢, i.e. var(asm,) = o7.

Now we have a multivariate normal distribution for the data given the
model a, and a physically motivated multivariate normal prior on a. Both
distributions are centered at zero. If the o, are known, then it is straightfor-
ward to compute the posterior mean and variance of a harmonic coefficient
given the data (e.g., Lindley & Smith (1972)). Many frequentists would not
object to such approach (Bayes’ formula is, after all, a theorem in probabil-
ity) unless, of course, they do not believe in the cosmological models accepted
by most astrophysicists. The problem is that the o, are unknown: they are
determined by two unknown cosmological parameters which we denote by @
(quadrupole amplitude normalization) and 7 (spectral index). What can we
do then? Here is where frequentists and Bayesians start to disagree. One
approach, which has been followed by cosmologists, is to use previously es-
timated values of () and 7 as if they were the true values. In this case the
posterior quadrupole uncertainties may be too optimistic since they do not
consider the uncertainty in the estimated values of @, 7. A good first step is
to study the sensitivity of the posterior estimates to a “reasonable” range of
values of @) and 1. We have done this in Tenorio et al. (1998). But again
we have a subjective choice of what reasonable means. We chose a region
defined by a bound on the CMB energy and found that the variability over

2DMR stands for the differential microwave radiometer that was on board NASA’s
cosmic background explorer (COBE) satellite
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this region is large enough that needs to be accounted for. We then used a
prior joint distribution for @), n. Unfortunately, the choice of this prior is no
longer physically motivated.

In summary, the CMB example shows how prior information is included
in the quadrupole estimation problem. We first realized that there was insuf-
ficient information to estimate quadrupole coefficients to the required degree
of accuracy. We then added prior information based on physical theories
and finally concluded that estimates to the required accuracy depend on
somewhat subjective choices of prior information. As pointed out before,
we could have just performed a least-squares (LS) fit to a spherical har-
monic expansion truncated at £ = 2, but the uncertainty of these estimates
would have been far too optimistic. For example, Figure 5 shows estimates
of Qrms = \/(a§,_2 + ...+ a3,)/4m using LS and posterior means of the ag,
for different truncations ¢ = f;,x. The uncertainty of the LS estimate grows
with £.«. This does not happen with the posterior mean of ()., because it
is constrained by the prior cosmological model.

We can use any method we want to obtain estimates of some unknown
parameter, but we have to make sure that the uncertainty estimates we use
are not artificial, as in with the quadrupole LS estimates. Whether one uses
a frequentist or a Bayesian approach, it is always important to be aware
of the model assumptions on which estimates rely: ‘The choice of models
is usually a more critical issue than the differences between the results of
various schools of formal inference’ (Cox (1981)).
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